

Owner's Manual

Original Instructions Commercial Air Conditioners

Photovoltaic Direct-driven Inverter VRF

Models:

GMV-Y72WM/C-F(U)

GMV-Y96WM/C-F(U)

GMV-Y120WM/C-F(U)

.

GMV-Y360WM/C-F(U)

Thank you for choosing commercial air conditioners. Please read this Owner's Manual carefully before operation and retain it for future reference.

If you have lost the Owner's Manual, please contact the local agent or visit www.gree.com or send an email to global@cn.gree.com for the electronic version.

GREE ELECTRIC APPLIANCES, INC. OF ZHUHAI

Preface

Gree Photovoltaic Direct-driven Inverter VRF System, with the most advanced technologies in the world, uses eco-friendly refrigerant R410A as its cooling medium. For correct installation and operation, please read this manual carefully.

	This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.
▲ WARNING	This mark indicates procedures which, if improperly performed, might lead to the death or serious injury of the user.
▲ CAUTION	This mark indicates procedures which, if improperly performed, might possibly result in personal harm to the user, or damage to property.
NOTICE	NOTICE is used to address practices not related to personal injury.

AWARNING

- (1) Instructions for installation and use of this product are provided by the manufacturer.
- (2) Installation must be performed in accordance with the requirements of NEC and CEC by authorized personnel only.
- (3) For safety operation, please strictly follow the instructions in this manual.
- (4) During operation, the gross rated capacity of working IDU should be within the gross rated capacity of ODU. Otherwise, IDU's cooling/heating performance will be reduced.
- (5) This manual must be in the hands of direct operators or maintenance men.
- (6) In case of malfunction and operation failure, please examine the following items and contact our authorized service centers as soon as possible.
 - 1) Nameplate (model, cooling capacity, product code, ex-factory date).
 - 2) Malfunction status (detail description of conditions before and after malfunction occurs).
- (7) All units have been strictly tested and proved to be qualified before ex-factory. To avoid unit damage or even operation failure which may be caused by improper disassembly, please do not disassemble units by yourself. If disassembly is needed, please contact our authorized serve centers for help.
- (8) All graphics and information in this manual are only for reference. Manufacturer reserves the right for changes in terms of sales or production at any time and without prior notice.
- (9) If the supply cord is damaged, it must be replaced by the manufacturer, its service agent or similarly qualified persons in order to avoid a hazard.

This appliance can be used by children aged from 8 years and above and persons with reduced physical, sensory or mental capabilities or lack of experience and knowledge if they have been given supervision or instruction concerning use of the appliance in a safe way and understand the hazards involved. Children shall not play with the appliance. Cleaning and user maintenance shall not be made by children without supervision.

DISPOSAL: Do not dispose this product as unsorted municipal waste. Collection of such waste separately for special treatment is necessary.

Exception Clauses

Manufacturer will bear no responsibilities when personal injury or property loss is caused by the following reasons:

Damage the product due to improper use or misuse of the product;

Alter, change, maintain or use the product with other equipment without abiding by the instruction manual of manufacturer;

After verification, the defect of product is directly caused by corrosive gas;

After verification, defects are due to improper operation during transportation of product;

Operate, repair, maintain the unit without abiding by instruction manual or related regulations;

After verification, the problem or dispute is caused by the quality specification or performance of parts and components that produced by other manufacturers;

The damage is caused by natural calamities, bad using environment or force majeure.

Contents

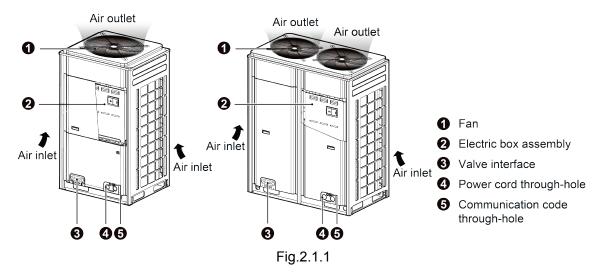
1 Salety Precautions	Т
2 Product Introduction	2
2.1 Names of Main Parts	2
2.2 Combinations of Outdoor Units	2
2.3 Combinations of Indoor and Outdoor Units	3
2.4 The Range of Production Working Temperature	3
3 Preparation before Installation	4
3.1 Standard Parts	4
3.2 Installation Site	5
3.3 Piping Work Requirements	9
4 Installation Instruction	10
4.1 Physical Dimension of the Outdoor Unit and Mounting Hole	10
4.2 Connection Pipe	12
4.3 Installation of the Connection Pipe	21
4.4 Air Purging and Refrigerant Charge	27
4.5 Electric Wiring	30
4.6 System Communication	33
4.7 Connection Method and Steps for System Communication	37
4.8 External Electrical Wiring Diagram	41
4.9 Installation of Photovoltaic System	42
5 Check Items after Installation and Trial Run	46
5.1 Check Items after Installation	46
5.2 Trial Run	46
6 Common Malfunction and Troubleshooting	61
7 Error Indication	62
8 Maintenance and Care	66
8.1 Outdoor Heat Exchanger	67
8.2 Drain Pipe	67
8.3 Notice before Seasonal Use	67
8.4 Maintenance after Seasonal Use	67
8.5 Parts Replacement	67
9 After sales Service	67

1 Safety Precautions

AWARNING

- (1) This product can't be installed at corrosive, inflammable or explosive environment or the place with special requirements, such as kitchen. Otherwise, it will affect the normal operation or shorten the service life of the unit, or even cause fire hazard or serious injury. As for above special places, please adopt special air conditioner with anti-corrosive or anti-explosion function.
- (2) Follow this instruction to complete the installation work. Please carefully read this manual before unit startup and service.
- (3) Wire size of power cord should be large enough. The damaged power cord and connection wire should be replaced by exclusive cable.
- (4) After connecting the power cord, please fix the electric box cover properly in order to avoid accident.
- (5) Never fail to comply with the nitrogen charge requirements. Charge nitrogen when welding pipes.
- (6) Never short-circuit or cancel the pressure switch to prevent unit damage.
- (7) Please firstly connect the wired controller before energization, otherwise wired controller cannot be used.
- (8) Before using the unit, please check if the piping and wiring are correct to avoid water leakage, refrigerant leakage, electric shock, or fire etc.
- (9) Do not insert fingers or objects into air outlet/inlet grille.
- (10)Open the door and window and keep good ventilation in the room to avoid oxygen deficit when the gas/oil supplied heating equipment is used.
- (11) Never start up or shut off the air conditioner by means of directly plug or unplug the power cord.
- (12)Turn off the unit after it runs at least five minutes; otherwise it will influence oil return of the compressor.
- (13)Do not allow children operate this unit.
- (14)Do not operate this unit with wet hands.
- (15)Turn off the unit or cut off the power supply before cleaning the unit, otherwise electric shock or injury may happen.
- (16) Never spray or flush water towards unit, otherwise malfunction or electric shock may happen.
- (17)Do not expose the unit to the moist or corrosive circumstances.
- (18)Under cooling mode, please don't set the room temperature too low and keep the temperature difference between indoor and outdoor unit within 5°C (41°F).
- (19)User is not allowed to repair the unit. Fault service may cause electric shock or fire accidents. Please contact Gree appointed service center for help.
- (20)Before installation, please check if the power supply is in accordance with the requirements specified on the nameplate. And also take care of the power safety.
- (21)Installation should be conducted by dealer or qualified personnel. Please do not attempt to install the unit by yourself. Improper handling may result in water leakage, electric shock or fire disaster etc.
- (22)Be sure to use the exclusive accessory and part to prevent the water leakage, electric shock and fire accidents.
- (23)Make sure the unit can be earthed properly and soundly after plugging into the socket so as to avoid electric shock. Please do not connect the ground wire to gas pipe, water pipe, lightning rod or telephone line.
- (24)Electrify the unit 8 hours before operation. Please switch on for 8 hours before operation. Do not cut off the power when 24 hours short-time halting (to protect the compressor).
- (25)If refrigerant leakage happens during installation, please ventilate immediately. Poisonous gas will emerge if the refrigerant gas meets fire.
- (26) Volatile liquid, such as diluent or gas will damage the unit appearance. Only use soft cloth with a little neutral detergent to clean the outer casing of unit.

AWARNING


(27)If anything abnormal happens (such as burning smell), please power off the unit and cut off the main power supply, and then immediately contact Gree appointed service center. If abnormality keeps going, the unit might be damaged and lead to electric shock or fire.

GREE will not assume responsibility of personal injury or equipment damage caused by improper installation and commission, unnecessary service and incapable of following the rules and instructions listed in this manual.

2 Product Introduction

Gree Photovoltaic Direct-driven Inverter VRF System adopts inverter compressor technology. According to change the displacement of compressor, stepless capacity regulation within range of 10%-100% can be realized. Gree air conditioner is absolutely your best choice.

2.1 Names of Main Parts

NOTICE! The picture is only used for reference and the actual product prevails.

2.2 Combinations of Outdoor Units

Model (Single)	GMV-Y144WM/C-F(U)	GMV-Y168WM/C-F(U)	GMV-Y192WM/C-F(U)
Model	GMV-Y72WM/C-F(U)	GMV-Y72WM/C-F(U)	GMV-Y96WM/C-F(U)
(Combined)	+ GMV-Y72WM/C-F(U)	+ GMV-Y96WM/C-F(U)	+ GMV-Y96WM/C-F(U)

Model (Single)	GMV-Y216WM/C-F(U)	GMV-Y240WM/C-F(U)	GMV-Y264WM/C-F(U)
Model (Combined)	GMV-Y96WM/C-F(U) + GMV-Y120WM/C-F(U)	GMV-Y120WM/C-F(U) + GMV-Y120WM/C-F(U)	GMV-Y72WM/C-F(U) + GMV-Y96WM/C-F(U) + GMV-Y96WM/C-F(U)

Model (Single)	GMV-Y288WM/C-F(U)	GMV-Y312WM/C-F(U)	GMV-Y336WM/C-F(U)
Model	GMV-Y96WM/C-F(U)	GMV-Y96WM/C-F(U)	GMV-Y96WM/C-F(U)
	+ GMV-Y96WM/C-F(U)	+ GMV-Y96WM/C-F(U)	+ GMV-Y120WM/C-F(U)
(Combined)	+ GMV-Y96WM/C-F(U)	+ GMV-Y120WM/C-F(U)	+ GMV-Y120WM/C-F(U)

	Model (Single)	GMV-Y360WM/C-F(U)
	Model	GMV-Y120WM/C-F(U)
Model (Combined)	+ GMV-Y120WM/C-F(U)	
	+ GMV-Y120WM/C-F(U)	

2.3 Combinations of Indoor and Outdoor Units

ODU Model	Max number of connectable IDU (unit)	ODU Model	Max number of connectable IDU (unit)
GMV-Y72WM/C-F(U)	13	GMV-Y240WM/C-F(U)	39
GMV-Y96WM/C-F(U)	16	GMV-Y264WM/C-F(U)	46
GMV-Y120WM/C-F(U)	19	GMV-Y288WM/C-F(U)	50
GMV-Y144WM/C-F(U)	23	GMV-Y312WM/C-F(U)	53
GMV-Y168WM/C-F(U)	29	GMV-Y336WM/C-F(U)	56
GMV-Y192WM/C-F(U)	33	GMV-Y360WM/C-F(U)	59
GMV-Y216WM/C-F(U)	36	-	-

The total capacity of indoor units should be within 50%~135% of that of outdoor units.

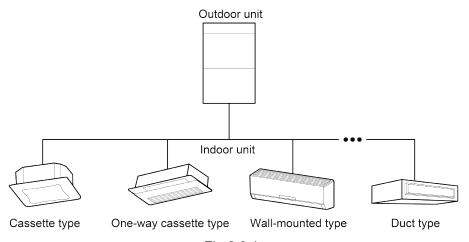


Fig.2.3.1

Fig.2.3.1 is the combination view of the ODU of Photovoltaic Direct-driven Inverter VRF and the IDU of Photovoltaic Direct-driven Inverter VRF. IDU can be four-way cassette type, one-way cassette type, wall-mounted type, duct type, etc. When any one IDU receives operation signal, ODU will start to work according to the capacity; when all IDUs stop, ODU will also stop.

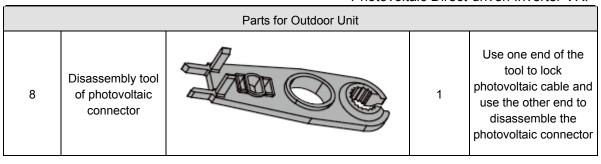
2.4 The Range of Production Working Temperature

Cooling	Ambient temperature: -5°C (23°F)~52°C (125.6°F)
Heating	Ambient temperature: -20°C (-4°F)~24°C (75.2°F)

When the indoor units are all VRF fresh air indoor units, the unit operating range is as follows:

Cooling	Ambient temperature: 16°C (60.8°F) ~45°C (113°F)
Heating	Ambient temperature: -7°C (19.4°F) ~16°C (60.8°F)

NOTICE! Out of the working Temperature Range may damage this product and will invalidate the warranty.

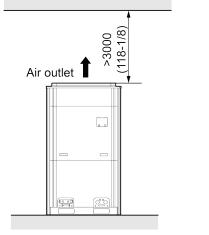

3 Preparation before Installation

NOTICE! The picture is only used for reference and the actual product prevails. Unit: mm(inch).

3.1 Standard Parts

Please use the following standard parts supplied by Gree.

	Parts for Outdoor Unit				
Number	Name	Picture	Quantity	Remarks	
1	Owner's Manual		1	-	
2	Wiring (match with resistance)		1	Must be connected to the last IDU of communication connection	
3	Mark (Master)	Master	2	Attach on the wired controller of master IDU or on the front panel	
4	Photovoltaic connector (positive pole)		4	Used with the photovoltaic positive pole terminal	
5	Photovoltaic connector (negative pole)		4	Used with the photovoltaic negative pole terminal	
6	Photovoltaic positive pole terminal	W.H. T.	4	Used with the photovoltaic connector (positive pole)	
7	Photovoltaic negative pole terminal	MILE MILE	4	Used with the photovoltaic connector (negative pole)	



3.2 Installation Site

AWARNING

- (1) Install the unit at a place where is adequate to withstand the weight of the unit and make sure the unit would not shake or fall off.
- (2) Never expose the unit under direct sunshine and rainfall. Install the unit at a place where is against dust, typhoon and earthquake.
- (3) Try to keep the unit away from combustible, inflammable and corrosive gas or exhaust gas.
- (4) Leave some space for heat exchanging and servicing so as to guarantee unit normal operation.
- (5) Keep the indoor and outdoor units close to each other as much as possible so as to decrease the pipe length and bends.
- (6) Never allow children to approach to the unit and take measures to prevent children touching the unit.
- 3.2.1 When the outdoor unit is totally surrounded by walls, please refer to following figures for space dimension.
- 3.2.1.1 Space dimension for single-module unit

Unit: mm(inch)

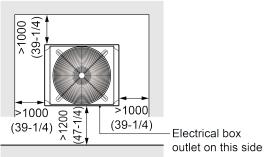


Fig.3.2.1

3.2.1.2 Space dimension for dual-module unit

Unit: mm(inch)

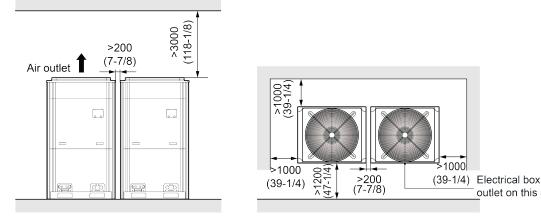


Fig.3.2.2

3.2.1.3 Space dimension for three-module unit

Unit: mm(inch)

outlet on this side

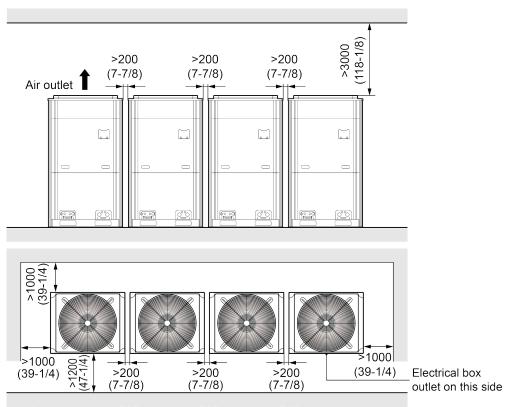
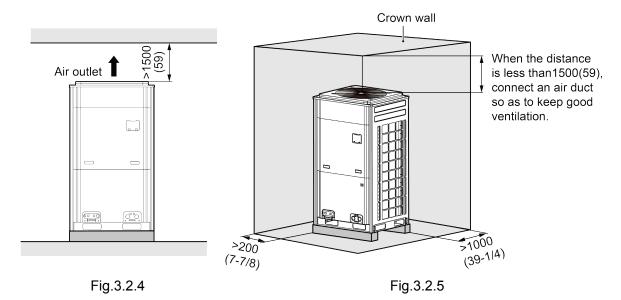



Fig.3.2.3

3.2.2 When there is wall (or similar obstruction) above the unit, keep the distance between the unit top and the wall at least 3000mm(118-1/8inch) or above. When the unit is located in a totally open space with no obstructions in four directions, keep the distance between the unit top and wall at least 1500mm(59inch) or above (See Fig.3.2.4). When space is limited within 1500mm(59inch) or the unit is not set in an open space, air outlet pipe is required to be installed in order to keep good ventilation (See Fig.3.2.5).

Unit: mm(inch)

3.2.3 Space dimension for multiple-module unit

For keeping good ventilation, make sure there is no obstruction above the unit.

When the unit is located at a half-open space (front and left/right side is open), install the unit as per the same or opposite direction.

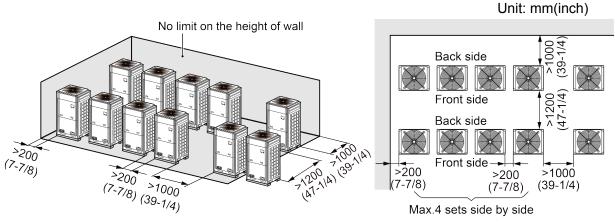


Fig.3.2.6

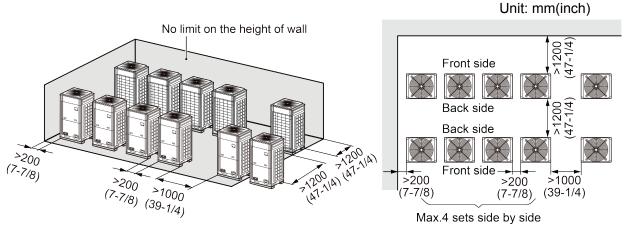


Fig.3.2.7

3.2.4 Considering the seasonal wind in outdoor unit installation

Anti-monsoon installation requirement for unit not connecting exhaust duct

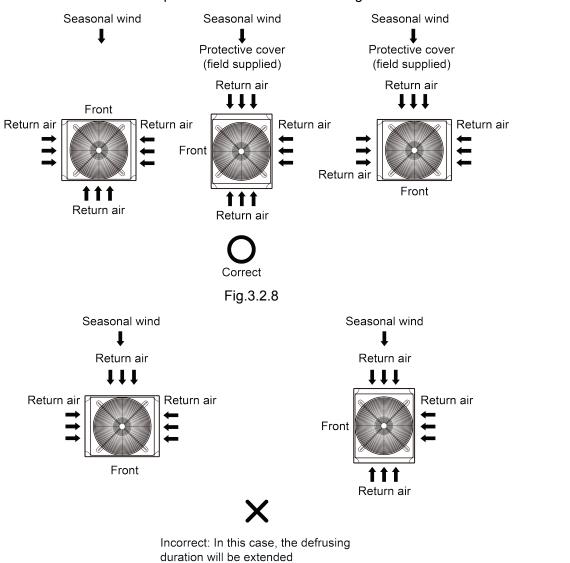


Fig.3.2.9

Anti-monsoon installation requirement for unit connecting exhaust duct

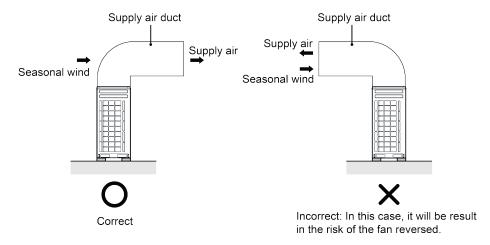


Fig.3.2.10

3.2.5 Considering snow in outdoor unit installation

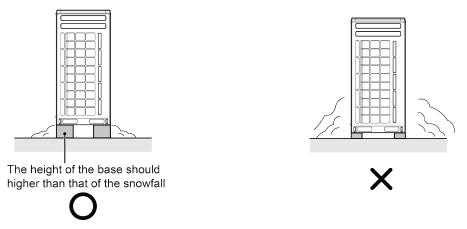


Fig.3.2.11

3.3 Piping Work Requirements

There should be no fall among outdoor modules. Refer to the table below for piping work requirements.

R410A Refrigerant System				
Outer Diameter mm(inch)	Wall Thickness mm(inch)	Type		
Ф6.35(1/4)	≥0.8(1/32)	0		
Ф9.52(3/8)	≥0.8(1/32)	0		
Ф12.7(1/2)	≥0.8(1/32)	0		
Ф15.9(5/8)	≥1.0(3/76)	0		
Ф19.05(3/4)	≥1.0(3/76)	1/2H		
Ф22.2(7/8)	≥1.2(1/21)	1/2H		
Ф28.6(1-1/8)	≥1.2(1/21)	1/2H		
Ф34.9(1-3/8)	≥1.3(2/39)	1/2H		
Ф41.3(1-5/8)	≥1.5(1/17)	1/2H		

4 Installation Instruction

4.1 Physical Dimension of the Outdoor Unit and Mounting Hole

Outline and Physical Dimension of GMV-Y72WM/C-F(U).

Unit: mm(inch)

Installation hole

792(31-1/8)

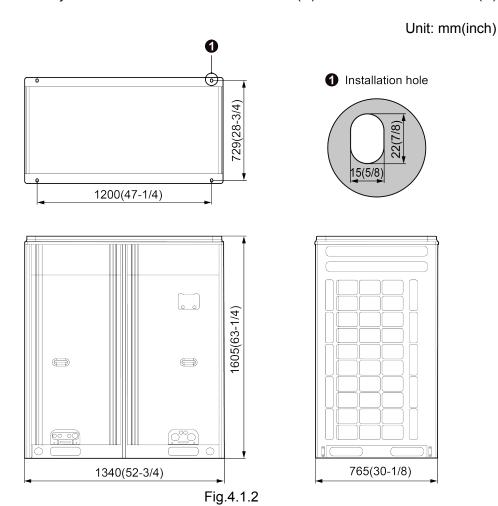
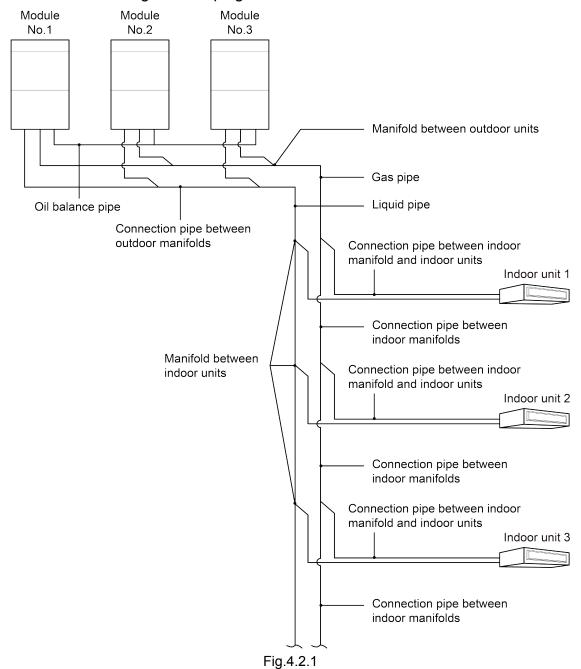
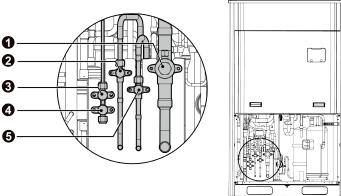

792(31-1/8)

Fig.4.1.1

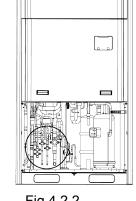
930(36-5/8)


765(30-1/8)

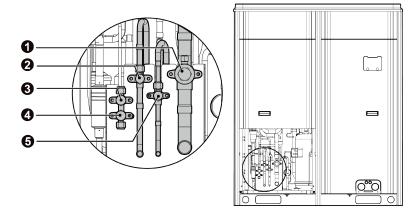
Outline and Physical Dimension of GMV-Y96WM/C-F(U) and GMV-Y120WM/C-F(U).



4.2 Connection Pipe


4.2.1 Schematic Diagram of Piping Connection

4.2.2 Schematic Diagram of Piping Sequence GMV-Y72WM/C-F(U)



- Fig.4.2.2
- GMV-Y96WM/C-F(U) and GMV-Y120WM/C-F(U).

- Liquid pipe stop valve
- Oil checking valve
- Low pressure checking valve
- Oil balance pipe valve

Gas pipe stop valve

- 2 Liquid pipe stop valve
- Oil checking valve
- Low pressure checking valve
- Oil balance pipe valve

Fig.4.2.3

4.2.3 Allowable pipe length and drop height among indoor and outdoor units

Y-type branch joint is adopted to connect indoor and outdoor units. Connecting method is shown in the figure below.

Remark: Equivalent length of one Y-type manifold is about 0.5m(1-3/4ft.).

Unit: m(ft.)

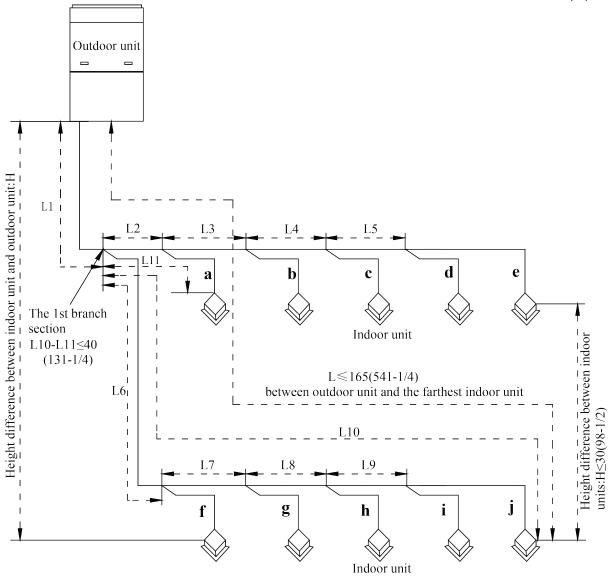


Fig.4.2.4

L10: Length from the first branch to the farthest IDU;

L11: Length from the first branch to the nearest IDU;

Equivalent length of branch of IDU is 0.5m(1-3/4ft.).

R410A Refrigerant System		Allowable Value m(ft.)	Fitting Pipe
Total length (actua	I length) of fitting pipe	≤1000(3280-3/4)	L1+L2+L3+L4++L9+a+b++i+j
Length of farthest	Actual length	≤165(541-1/4)	141161171191101
fitting pipe m(ft.)	Equivalent length	≤190(623-1/4)	L1+L6+L7+L8+L9+j
Difference between the pipe length from the first branch of IDU to the farthest IDU and the pipe length from the first branch of IDU to the nearest IDU		≤40(131-1/4)	L10-L11
Equivalent length from the first branch to the furthest piping (1)		≤40(131-1/4)	L6+L7+L8+L9+j
Height difference Outdoor unit at upper		≤90(295-1/4)	-
between outdoor unit and indoor unit	Outdoor unit at lower	≤90(295-1/4)	-
Height difference between indoor units		≤30(98-2/4)	-

R410A Refrigerant System	Allowable Value m(ft.)	Fitting Pipe
Maximum length of Main pipe(2)	<90(295-1/4)	L1
From IDU to its nearest branch (3)	≤40(131-1/4)	a,b,c,d,e,f,g,h,i,j

NOTICE:

- (1) Normally, the pipe length from the first branch of IDU to the farthest IDU is 40m(131-1/4ft.). Under the following conditions, the length can reach 90m(295-1/4ft.).
 - 1)Actual length of pipe in total: L1+L2x2+L3x2+L4x2+...+L9x2+a+b+...+i+j≤1000m(3280-3/4ft.).
 - 2)Length between each IDU and its nearest branch a, b, c, d, e, f, g, h, i, j≤40m(131-1/4ft.).
 - 3)Difference between the pipe length from the first branch of IDU to the farthest IDU and the pipe length from the first branch of IDU to the nearest IDU: L10-L11≤40m(131-1/4ft.).
- (2) When the maximum length of the main pipe from ODU to the first branch of IDU is≥90m(295-1/4ft.), then adjust the pipe size of the gas pipe and liquid pipe of main pipe according to the following table.

Outdoor Model	Gas pipe size mm(inch)	Liquid pipe size mm(inch)
GMV-Y72WM/C-F(U)	No need to enlarge pipe size	No need to enlarge pipe size
GMV-Y96WM/C-F(U)	No need to enlarge pipe size	Ф12.7(1/2)
GMV-Y120WM/C-F(U)	No need to enlarge pipe size	Ф15.9(5/8)
GMV-Y144WM/C-F(U)	Ф34.9(1-3/8)	Ф15.9(5/8)
GMV-Y168WM/C-F(U)	Ф34.9(1-3/8)	Ф19.05(3/4)
GMV-Y192WM/C-F(U)	Ф34.9(1-3/8)	Ф19.05(3/4)
GMV-Y216WM/C-F(U)	Ф34.9(1-3/8)	Ф19.05(3/4)
GMV-Y240WM/C-F(U)	No need to enlarge pipe size	Ф19.05(3/4)
GMV-Y264WM/C-F(U)	No need to enlarge pipe size	Ф22.2(7/8)
GMV-Y288WM/C-F(U)	No need to enlarge pipe size	Ф22.2(7/8)
GMV-Y312WM/C-F(U)	No need to enlarge pipe size	Ф22.2(7/8)
GMV-Y336WM/C-F(U)	No need to enlarge pipe size	Ф22.2(7/8)
GMV-Y360WM/C-F(U)	No need to enlarge pipe size	Ф22.2(7/8)

(3) If the length between an IDU and its nearest branch is above 10m(32-7/8ft.), then increase the size of the liquid pipe of IDU (only for the pipe size that is≤6.35mm(1/4inch).

4.2.4 Connection Pipe among Outdoor Modules

Unit: m(ft.)

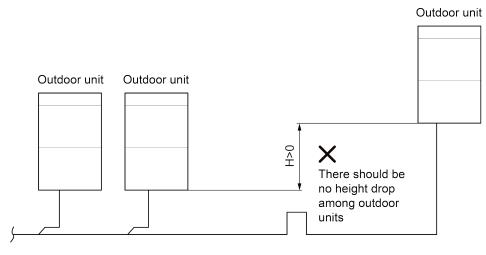
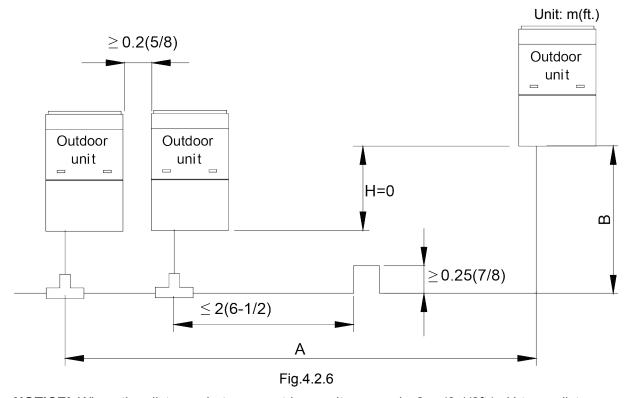



Fig.4.2.5

NOTICE! When the distance between outdoor units exceeds 2m (6-1/2ft.), U-type oil trap should be added at low-pressure gas pipe. A+B \leq 10m (32-7/8ft.).

- 4.2.5 Fitting pipe between Outdoor Unit and the First Manifold
- 4.2.5.1 For single module system, pipe size (between outdoor unit and the first manifold) is determined by that of outdoor unit.

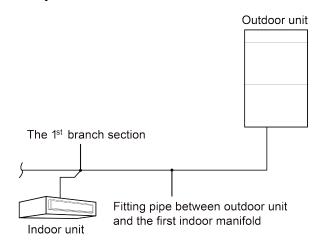


Fig.4.2.7 Pipe size of basic outdoor module is shown as follows:

Dania Madula	Pipe between ODU and the first branch of IDU		
Basic Module	Gas Pipe mm(inch)	Liquid Pipe mm(inch)	
GMV-Y72WM/C-F(U)	Ф19.05(3/4)	Ф9.52(3/8)	
GMV-Y96WM/C-F(U)	Ф22.2(7/8)	Ф9.52(3/8)	
GMV-Y120WM/C-F(U)	Ф28.6(1-1/8)	Ф12.7(1/2)	

4.2.5.2 For multi-module unit, select appropriate manifold connected to outdoor module as per the pipe size of basic module. Pipe size of basic outdoor module is shown as follows:

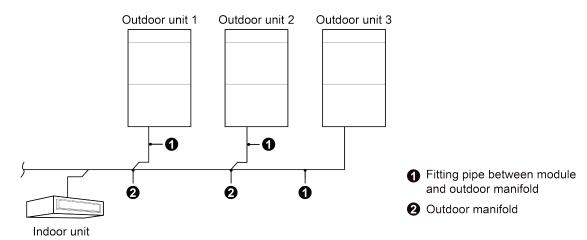


Fig.4.2.8

Dania Madula	Pipe between module and branch of ODU		
Basic Module	Gas Pipe mm(inch) Liquid Pipe mm(inch)		
GMV-Y72WM/C-F(U)	Ф19.05(3/4)	Ф9.52(3/8)	
GMV-Y96WM/C-F(U)	Ф22.2(7/8)	Ф9.52(3/8)	
GMV-Y120WM/C-F(U)	Ф28.6(1-1/8)	Ф12.7(1/2)	

Select the branch of outdoor module

Colort the bronch of outdoor module	Model	
Select the branch of outdoor module	ML01/A	

4.2.5.3 Fitting pipe between two manifolds from basic modules

Pipe size (between two manifolds from basic modules) is based on the total capacity of upstream modules.

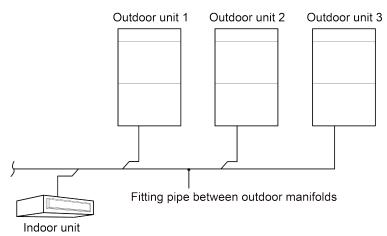


Fig.4.2.9

Total capacity of upstream modules	Pipe size between manifolds	
C(Btu/h)	Gas pipe size mm(inch)	Liquid pipe size mm(inch)
144000	Ф28.6(1-1/8)	Ф12.7(1/2)
168000	Ф28.6(1-1/8)	Ф15.9(5/8)
192000	Ф28.6(1-1/8)	Ф15.9(5/8)
216000	Ф28.6(1-1/8)	Ф15.9(5/8)
240000	Ф34.9(1-3/8)	Ф15.9(5/8)

4.2.5.4 Fitting pipe between the first manifold from indoor unit and the end manifold from outdoor unit

Single module unit

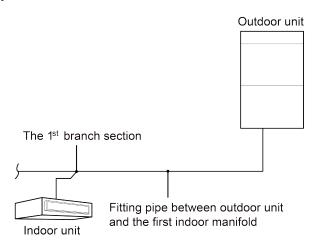


Fig.4.2.10

Photovoltaic Direct-driven Inverter VRF

Dania Madula	Pipe between ODU and the first branch of IDU	
Basic Module	Gas Pipe mm(inch) Liquid Pipe mm(inch)	
GMV-Y72WM/C-F(U)	Ф19.05(3/4)	Ф9.52(3/8)
GMV-Y96WM/C-F(U)	Ф22.2(7/8)	Ф9.52(3/8)
GMV-Y120WM/C-F(U)	Ф28.6(1-1/8)	Ф12.7(1/2)

For multiple modules, the piping from ODU to the first branch of IDU is based on the total rated capacity of outdoor modules.

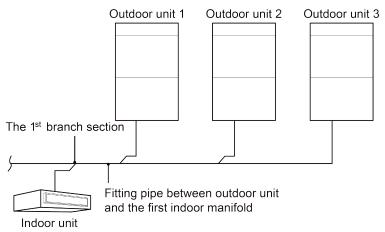


Fig.4.2.11

Total rated capacity of outdoor	Pipe between ODU and the first branch of IDU		
modules (multi-modular system)	Gas pipe size mm(inch)	Liquid pipe size mm(inch)	
GMV-Y144WM/C-F(U)	Ф28.6(1-1/8)	Ф12.7(1/2)	
GMV-Y168WM/C-F(U)	Ф28.6(1-1/8)	Ф15.9(5/8)	
GMV-Y192WM/C-F(U)	Ф28.6(1-1/8)	Ф15.9(5/8)	
GMV-Y216WM/C-F(U)	Ф28.6(1-1/8)	Ф15.9(5/8)	
GMV-Y240WM/C-F(U)	Ф34.9(1-3/8)	Ф15.9(5/8)	
GMV-Y264WM/C-F(U)	Ф34.9(1-3/8)	Ф19.05(3/4)	
GMV-Y288WM/C-F(U)	Ф34.9(1-3/8)	Ф19.05(3/4)	
GMV-Y312WM/C-F(U)	Ф34.9(1-3/8)	Ф19.05(3/4)	
GMV-Y336WM/C-F(U)	Ф34.9(1-3/8)	Ф19.05(3/4)	
GMV-Y360WM/C-F(U)	Ф41.3(1-5/8)	Ф19.05(3/4)	

4.2.5.5 Manifold at indoor unit side

Manifold at indoor unit side can be selected as per total capacity of downstream indoor unit(s). Refer to the following table.

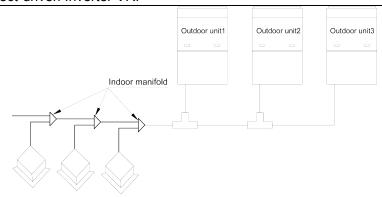


Fig.4.2.12(a)



Fig.4.2.12(b)

R410A Refrigerant System	Total capacity of downstream indoor unit(s) C (KBtu/h)	Model
	C<68	FQ01A/A
V tune Manifold	68≶C≶102	FQ01B/A
Y-type Manifold	102 <c≤239< td=""><td>FQ02/A</td></c≤239<>	FQ02/A
	239 <c< td=""><td>FQ03/A</td></c<>	FQ03/A
	C≤136	FQ14/H1
T- type Manifold	C≤232	FQ18/H1
	232 <c< td=""><td>FQ18/H2</td></c<>	FQ18/H2

4.2.5.6 Fitting pipe between manifolds

Pipe size (between two manifolds at indoor unit side) is based on the total capacity of upstream indoor unit(s).

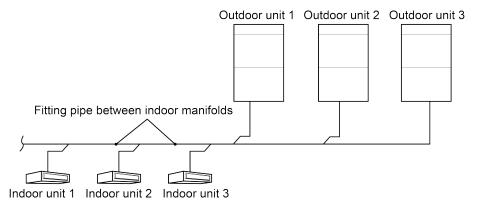


Fig.4.2.13

Photovoltaic Direct-driven Inverter VRF

Total capacity of downstream indoor	Dimension of the pipe of indoor branch	
unit(s) C(Btu/h)	Gas Pipe mm(inch)	Liquid Pipe mm(inch)
C≤17100	Ф12.7(1/2)	Ф6.35(1/4)
17100 <c≤48500< td=""><td>Ф15.9(5/8)</td><td>Ф9.52(3/8)</td></c≤48500<>	Ф15.9(5/8)	Ф9.52(3/8)
48500 <c≤72000< td=""><td>Ф19.05(3/4)</td><td>Ф9.52(3/8)</td></c≤72000<>	Ф19.05(3/4)	Ф9.52(3/8)
72000 <c≪96000< td=""><td>Ф22.2(7/8)</td><td>Ф9.52(3/8)</td></c≪96000<>	Ф22.2(7/8)	Ф9.52(3/8)
96000 <c≤144000< td=""><td>Ф28.6(1-1/8)</td><td>Ф12.7(1/2)</td></c≤144000<>	Ф28.6(1-1/8)	Ф12.7(1/2)
144000 <c≪216000< td=""><td>Ф28.6(1-1/8)</td><td>Ф15.9(5/8)</td></c≪216000<>	Ф28.6(1-1/8)	Ф15.9(5/8)
216000 <c≤240000< td=""><td>Ф34.9(1-3/8)</td><td>Ф15.9(5/8)</td></c≤240000<>	Ф34.9(1-3/8)	Ф15.9(5/8)
240000 <c≪336000< td=""><td>Ф34.9(1-3/8)</td><td>Ф19.05(3/4)</td></c≪336000<>	Ф34.9(1-3/8)	Ф19.05(3/4)
336000 <c< td=""><td>Ф41.3(1-5/8)</td><td>Ф19.05(3/4)</td></c<>	Ф41.3(1-5/8)	Ф19.05(3/4)

4.2.5.7 Fitting pipe between indoor unit and manifold

Manifold should be matched with fitting pipe of indoor unit.

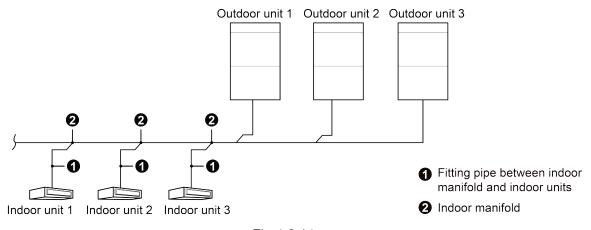


Fig.4.2.14

Rated capacity of indoor unit	Pipe between indoor branch and IDU	
C(Btu/h)	Gas Pipe mm(inch)	Liquid Pipe mm(inch)
C≤9500	Ф9.52(3/8)	Ф6.35(1/4)
9500 <c≤17100< th=""><th>Ф12.7(1/2)</th><th>Ф6.35(1/4)</th></c≤17100<>	Ф12.7(1/2)	Ф6.35(1/4)
17100 <c≤48500< th=""><th>Ф15.9(5/8)</th><th>Ф9.52(3/8)</th></c≤48500<>	Ф15.9(5/8)	Ф9.52(3/8)
48500 <c≤72000< th=""><th>Ф19.05(3/4)</th><th>Ф9.52(3/8)</th></c≤72000<>	Ф19.05(3/4)	Ф9.52(3/8)
72000 <c< th=""><th>Ф22.2(7/8)</th><th>Ф9.52(3/8)</th></c<>	Ф22.2(7/8)	Ф9.52(3/8)

4.3 Installation of the Connection Pipe

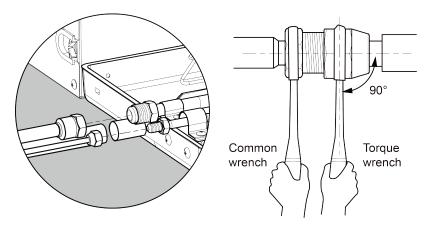
4.3.1 Precautions when installing the connection pipe

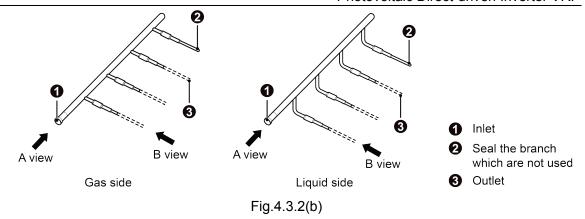
NOTICE!

Before welding the pipeline sealing cap, please make sure there's no refrigerant in pipeline. If welding it directly, it may cause unnecessary property damage or personal injury.

- (1) Conform to the following principles during piping connection: Connection pipeline should be as short as possible. The height difference between indoor and outdoor units should be as short as possible. Keep number of bends as little as possible. The radius of curvature should be as large as possible.
- (2) Weld the connection pipes between indoor and outdoor unit. Please strictly conform to the requirements for welding process. Rosin joints and pin holes are not allowable.

- (3) When laying the pipes, be careful not to deform them. The radius of bending parts should be more than 200mm(7-7/8inch). The pipes cannot be repeatedly bent or stretched, otherwise the material will get harden. Do not bend or stretch the pipe over three times at the same position.
- (4) Please use a torque spanner to connect union nut on the indoor unit. See Fig.4.3.1.




Fig.4.3.1

- 1) Align the expansion end of copper pipe with the center of threaded joint. Tighten the flare nuts with your hands.
- 2) Tighten the flare nuts with torque wrench until you hear "click" sound.
- 3) Use sponge to wrap the connecting pipe and joints without thermal insulation and tie it up with plastic tape.
- 4) A mounting support for the connection pipe is required.
- 5) The curvature degree of connection pipe should not be small, otherwise the pipe might crack. Installation personnel should use tube bender when bending the pipe.
- 6) Don't forcibly stretch the pipe joint, otherwise indoor capillary or other pipes might be damaged and lead to refrigerant leakage.

4.3.2 Manifold

(1) Y-type manifold, See the Fig.4.3.2(a). T-type manifold, See the Fig.4.3.2(b).

(2) Manifold has several pipe sections with different pipe size, which facilitates to match with various copper pipe. Use pipe cutter to cut in the middle of the pipe section with different pipe size and deburr as well. See Fig.4.3.3.

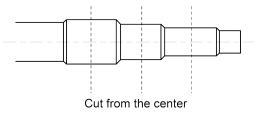


Fig.4.3.3

(3) Y-type manifold can be installed vertically or horizontally. Confirm the position and then weld the manifold pipe. See the Fig.4.3.4(a). T-type manifold must be installed horizontally with inclination, see the Fig.4.3.4(b).

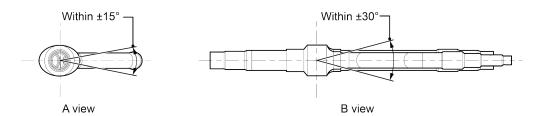
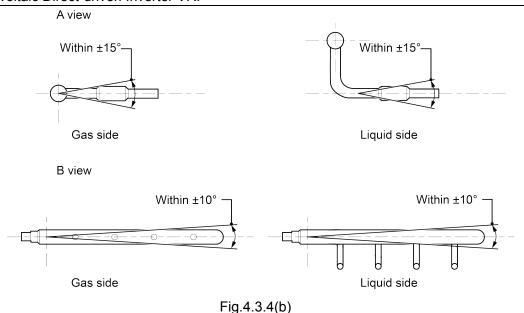



Fig.4.3.4(a)

(4) Manifold is isolated by insulating material that can bear 120 °C (248 °F)or higher temperature. Manifold attached foam cannot be taken as insulating material.

4.3.3 Installation and thermal insulation for pipeline

- (1) For multi VRF system, every copper pipe should be labeled so as to avoid misconnection.
- (2) Manifolds can be laid in the following ways:
- (3) The length of a straight pipe between two manifolds cannot be less than 500 mm (19-11/16inch). The length of a straight pipe before the main pipe port of the manifold cannot be less than 500mm (19-11/16inch). The length of a straight pipe between the branch of the manifold and the IDU cannot be less than 500mm(19-11/16inch). See Fig.4.3.5.

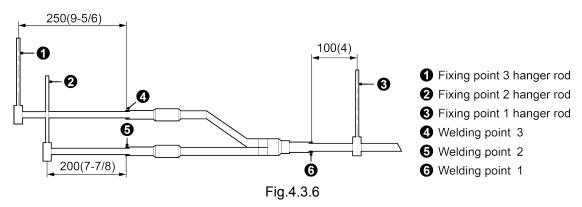
Unit: mm(inch)

≥500(19-11/16)

≥500(19-11/16)

≥500(19-11/16)

Fig.4.3.5


(4) There must be three fixing point for both horizontal and vertical installation of the Y-type manifold. See Fig.4.3.6.

Fixing point 1: 100mm(4inch) on the main inlet manifold from the welding point

Fixing point 2: 200mm(7-7/8inch) on the main branched pipe from the welding point

Fixing point 3: 250mm(9-5/6inch) on the branched pipe from the welding point

Unit: mm(inch)

(5) Suspend the header to the ceiling, and be sure to install the T-type manifold so that the outlet pipes are horizontal at the lower side. See Fig.4.3.7.

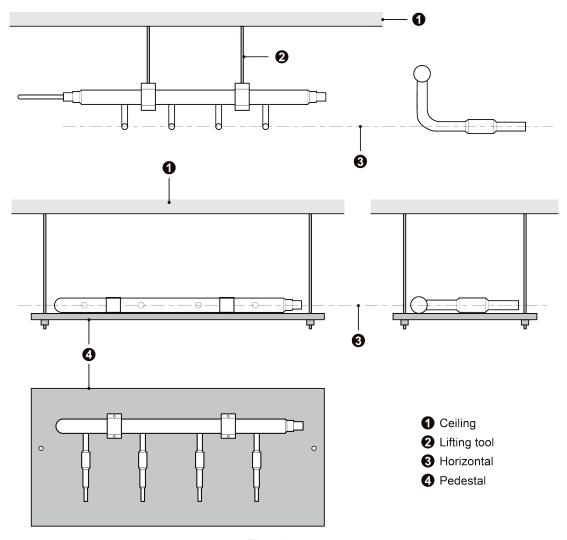


Fig.4.3.7

(6) Thermal insulation for pipeline

- 1) To avoid condensate or water leakage on connecting pipe, the gas pipe and liquid pipe must be wrapped with thermal insulating material and adhesive pipe for insulation from the air.
- 2) For heat pump unit, liquid pipe should bear $70^{\circ}\text{C}(158^{\circ}\text{F})$ or above, and gas pipe should bear $120^{\circ}\text{C}(248^{\circ}\text{F})$ or above. For cooling only unit, both liquid pipe and gas pipe should bear $70^{\circ}\text{C}(158^{\circ}\text{F})$ or above. Example: Polyethylene foam can bear $120^{\circ}\text{C}(248^{\circ}\text{F})$ above and foaming polyethylene can bear $100^{\circ}\text{C}(212^{\circ}\text{F})$ above.
- 3) Joints at indoor and outdoor units should be wrapped with insulating material and leave no clearance between pipe and wall. See Fig.4.3.8.

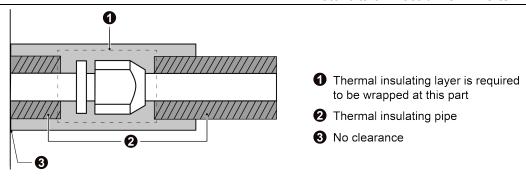


Fig.4.3.8

- 4) Manifold attached foam can not be taken as insulating material.
- 5) When wrapping the tape, the later circle should cover half of the former one. Don't wrap the tape so tightly, otherwise the insulation effect will be weakened.
- 6) After wrapping the pipe, adopt sealing material to completely fill the hole so as to prevent wind and rain from entering the room.
- 7) Thickness of thermal insulating layer. The thermal insulating material adopted by outdoor pipeline should be windproof, anti-weathering and anti-rimous.

External diameter of copper pipe (mm)	≤12.7	≥15.88
Thickness of thermal insulating layer (mm)	≥ 15	≥ 20

4.3.4 Support and protection for pipeline

- (1) Support should be made for hanging connection pipe. Distance between each support can not be over 1m(39-3/8inch).
- (2) Protection towards accidental damage should be made for outdoor pipeline. When the pipeline exceeds 1m(39-3/8inch), a pin. board should be added for protection.

4.4 Air Purging and Refrigerant Charge

4.4.1 Air purging

- (1) Confirm outdoor liquid and gas valves are closed. Air purring from the nozzle located on liquid and gas valves by vacuum pump See Fig.4.4.1.
- (2) When there are more than 2 outdoor units, air purging from the nozzel located on the oil balance valve. Confirm outdoor oil balance valves are closed See Fig.4.4.2.

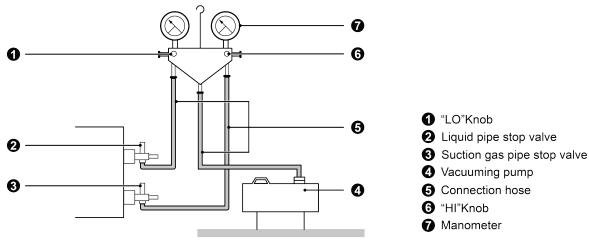


Fig.4.4.1

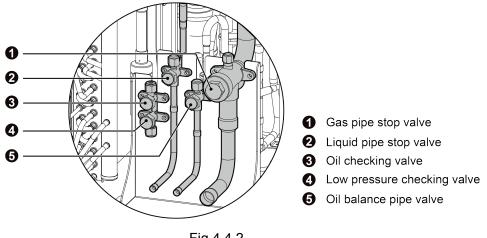


Fig.4.4.2

4.4.2 Additional refrigerant charging

Outdoor unit has been charged refrigerant before delivery.

Charge additional refrigerant for field-installed connecting pipe. If the pipeline is longer than 1m(39-3/8inch), please refer to the following table for charging amount of refrigerant. (Liquid pipe prevails)

How much additional refrigerant should be charged.

Total refrigerant charging amount R= Pipeline charging amount A + ∑charging amount B of every module.

(1) Pipeline charging amount

Added refrigerant quantity A for piping = ∑Liquid pipe length × Added refrigerant quantity for each meter(inch) of liquid pipe.

	Diameter of liquid pipe						mm(inch)	
	28.6(1-1/8)	25.4(1)	22.2(7/8)	19.05(3/4)	15.9(5/8)	12.7(1/2)	9.52(3/8)	6.35(1/4)
kg/m	0.680	0.520	0.350	0.250	0.170	0.110	0.054	0.022
OZ/inch	0.61	0.47	0.31	0.22	0.15	0.10	0.05	0.02

(2) ∑Refrigerant charging amount B of every module.

Refrigerant charging module kg		Rated Capacity(1000Btu/h)			
IDU/ODU rated capacity collocation ratio C	Quantity of included IDUs(N)	72	96	120	
50%≤C≤90%	N<4	0	0	0	
	N≥4	0.5(1.1)	0.5(1.1)	0.5(1.1)	
90% <c≤105%< td=""><td>N<4</td><td>1(2.2)</td><td>1(2.2)</td><td>1.5(3.3)</td></c≤105%<>	N<4	1(2.2)	1(2.2)	1.5(3.3)	
	8>N≥4	2(4.4)	2(4.4)	3(6.6)	
	N≥8	4(8.8)	3.5(7.7)	4(8.8)	
	N<4	2(4.4)	2(4.4)	2.5(5.5)	
105% <c≤135%< td=""><td>8>N≥4</td><td>4(8.8)</td><td>3.5(7.7)</td><td>4(8.8)</td></c≤135%<>	8>N≥4	4(8.8)	3.5(7.7)	4(8.8)	
	N≥8	4.5(9.9)	4.5(9.9)	5(11.0)	

NOTICE

⁽¹⁾ IDU/ODU rated capacity collocation ratio C = Sum of rated cooling capacity of indoor unit / Sum of rated cooling capacity of outdoor unit.

⁽²⁾ If all of the indoor units are fresh air indoor units, the quantity of refrigerant added to each module is 0kg.

NOTICE

(3) If outdoor air processor is connected with normal VRF indoor unit, adopt the perfusion method for normal indoor unit for perfusion.

For example1:

The ODU is composed of 3 modules: 72kBtu/h, 120 kBtu/h and 120 kBtu/h. The IDUs are made up of 7sets of 48 kBtu/h.

IDU/ODU rated capacity collocation ratio C= 48×7/(72+120+120)=108%. The quantity of included IDUs is more than 4 sets. Please refer to the above table.

Refrigerant charging amount B for 72kBtu/h module is 4.0kg(8.8pounds).

Refrigerant charging amount B for 120 kBtu/h module is 4.0kg(8.8pounds).

Refrigerant charging amount B for 120 kBtu/h module is 4.0kg(8.8pounds).

So, Σ Refrigerant charging amount B of every module=4.0+4.0+4.0=12kg (8.8+8.8+8.8 = 26.4pounds).

Suppose the Pipeline charging amount $A=\Sigma$ Liquid pipe length × refrigerant charging amount of every 1m (or 1inch) liquid pipe=25kg (55.1 pounds)

Total refrigerant charging amount R=25+12=37kg (55.1+26.4=81.5pounds).

For example 2:

Outdoor unit is a 72kBtu/h module and the indoor unit is a 72kBtu/h fresh air unit. The quantity (B) of refrigerant added to this module is 0kg (0pounds).

So, ΣB (Quantity of refrigerant added to each module) = 0kg (0pounds).

Suppose that A (Quantity of refrigerant added to connection pipe) = \sum Length of liquid pipe x Quantity of refrigerant added to liquid pipe per meter) = 5kg (11pounds).

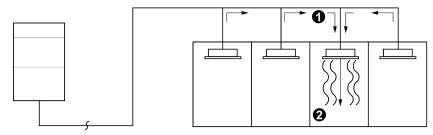
R (Quantity of added refrigerant in total) = 5+0=5kg (11+0=11pounds).

Modular combination of outdoor unit subjects to combinations that is currently available.

After confirming that there is no leakage from the system, when the compressor is not in operation, charge additional R410A with specified amount to the unit through the filling opening of the liquid pipe valve of the outdoor unit. If required additional refrigerant cannot be quickly filled for increase of pressure in the pipe, set the unit at cooling startup and then fill the refrigerant from gas valve of outdoor unit. If ambient temperature is low, the unit can't be set to cooling mode but heating mode.

4.4.3 Precautions on Refrigerant Leakage

- (1) Personnel related to air conditioning engineering design and installation operators must abide by the safety requirement for preventing refrigerant leakage specified in local laws and regulations.
- (2) The units adopt the R410A refrigerant, which is nonflammable and nontoxic. However, the space for refrigerant leakage must be sufficient to ensure that the refrigerant concentration does not exceed that specified in the safety requirement; otherwise, people involved can be stifled by the refrigerant. For example the maximum allowed


concentration level of refrigerant to a humanly space for R410A according to the appropriate European Standard is limited to 0.44 kg/m3.

The maximum amount of refrigerant (kg) in the system = The volume of the room (m³) *The maximum allowed concentration level of refrigerant (kg/m³)

Total amount of refrigerant (kg) in the system = Total additional charging amount (kg) + Amount of refrigerant (kg) which is charged before leaving the factory (for the system consisting of multiple modules in parallel, the accumulative charge quantity of modules before leaving the factory is used)

Total amount of refrigerant (kg) in the system ≤The maximum amount of refrigerant (kg) in the system

(3) When the total amount of refrigerant in the system is more than the maximum amount of refrigerant, the cooling system should be designed again. In this case, the cooling system can also be separated into several cooling systems with small capacity, or add corresponding ventilation measures or alarming display.

- Flow direction of refrigerant leakage
- 2 Room for refrigerant leakage.

Fig.4.4.3

Since the concentration of refrigerant is greater than that of air, pay attention to the spaces where the refrigerant may residue, for example, the basement.

4.5 Electric Wiring

4.5.1 Wiring precautions

AWARNING

- (1) All electrical installations must be performed by professionally qualified electricians in accordance with local laws, regulations and corresponding instructions. All parts, materials and electrical operations provided must comply with local regulations.
- (2) The unit must be reliably grounded, with grounding resistance smaller than 4Ω .
- (3) The special power supply for air conditioning unit must be used, and the power supply specifications must be consistent with the rated power supply of the unit.
- (4) The power cord must be reliably secured. It is forbidden to pull the power cord forcibly to prevent the wiring terminal from being stressed; if the length of power cord is insufficient or the power cord is damaged, it is forbidden to connect two power cords together. Please apply a new power cord that meets the local regulations.
- (5) The unit must be equipped with the circuit breaker and the electric leakage protection device. The circuit breaker should have both magnetic tripping and thermal tripping functions.
- (6) It is forbidden to take power from the inside of the unit, which may cause fire hazard.

AWARNING

(7) When wiring on site, please also refer to the circuit diagram attached on the unit. Before all electrical installations are completed, it is forbidden to put through the power supply (circuit breaker and electric leakage protection device on the circuit).

4.5.2 Wiring of power cord

Every unit should have corresponding short-circuit and overload protection. And also a main switch is required to control power supply or disconnection. See Fig.4.5.1.

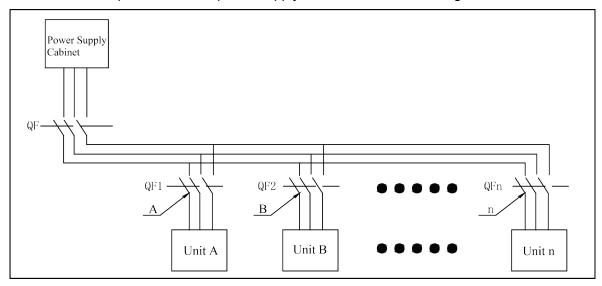


Fig.4.5.1

Outdoor Unit (208V)

Outdoor units	Power Supply	Fuse Capacity	Minimum Circuit Ampacity	Maximum Overcurrent Protection
	V/ Ph /Hz	Α	Α	A
GMV-Y72WM/C-F(U)	208V 3~ 60Hz	45	35.3	45
GMV-Y96WM/C-F(U)	208V 3~ 60Hz	45	43.6	45
GMV-Y120WM/C-F(U)	208V 3~ 60Hz	45	44.8	45
GMV-Y144WM/C-F(U)	208V 3~ 60Hz	45+45	35.3+35.3	45+45
GMV-Y168WM/C-F(U)	208V 3~ 60Hz	45+45	35.3+43.6	45+45
GMV-Y192WM/C-F(U)	208V 3~ 60Hz	45+45	43.6+43.6	45+45
GMV-Y216WM/C-F(U)	208V 3~ 60Hz	45+45	43.6+44.8	45+45
GMV-Y240WM/C-F(U)	208V 3~ 60Hz	45+45	44.8+44.8	45+45
GMV-Y264WM/C-F(U)	208V 3~ 60Hz	45+45+45	35.3+43.6+43.6	45+45+45
GMV-Y288WM/C-F(U)	208V 3~ 60Hz	45+45+45	43.6+43.6+43.6	45+45+45
GMV-Y312WM/C-F(U)	208V 3~ 60Hz	45+45+45	43.6+43.6+44.8	45+45+45
GMV-Y336WM/C-F(U)	208V 3~ 60Hz	45+45+45	43.6+44.8+44.8	45+45+45
GMV-Y360WM/C-F(U)	208V 3~ 60Hz	45+45+45	44.8+44.8+44.8	45+45+45

Outdoor Unit (240V)

Outdoor units	Power Supply	Fuse Capacity	Minimum Circuit Ampacity	Maximum Overcurrent Protection
	V/ Ph /Hz	Α	Α	A
GMV-Y72WM/C-F(U)	240V 3~ 60Hz	40	30.3	40
GMV-Y96WM/C-F(U)	240V 3~ 60Hz	40	37.3	40
GMV-Y120WM/C-F(U)	240V 3~ 60Hz	40	39.8	40
GMV-Y144WM/C-F(U)	240V 3~ 60Hz	40+40	30.3+30.3	40+40
GMV-Y168WM/C-F(U)	240V 3~ 60Hz	40+40	30.3+37.3	40+40
GMV-Y192WM/C-F(U)	240V 3~ 60Hz	40+40	37.3+37.3	40+40
GMV-Y216WM/C-F(U)	240V 3~ 60Hz	40+40	37.3+39.8	40+40
GMV-Y240WM/C-F(U)	240V 3~ 60Hz	40+40	39.8+39.8	40+40

Photovoltaic Direct-driven Inverter VRF

Outdoor units	Power Supply	Fuse Capacity	Minimum Circuit Ampacity	Maximum Overcurrent Protection
	V/ Ph /Hz	Α	Α	A
GMV-Y264WM/C-F(U)	240V 3~ 60Hz	40+40+40	30.3+37.3+37.3	40+40+40
GMV-Y288WM/C-F(U)	240V 3~ 60Hz	40+40+40	37.3+37.3+37.3	40+40+40
GMV-Y312WM/C-F(U)	240V 3~ 60Hz	40+40+40	37.3+37.3+39.8	40+40+40
GMV-Y336WM/C-F(U)	240V 3~ 60Hz	40+40+40	37.3+39.8+39.8	40+40+40
GMV-Y360WM/C-F(U)	240V 3~ 60Hz	40+40+40	39.8+39.8+39.8	40+40+40

AWARNING

- (1) Specification of circuit breaker and power cord is selected on the basis of unit's maximum power (max. current).
- (2) Specification of power cord is based on the working condition where ambient temperature is 40 °C (104 °F) and multi-core cable with copper conductor(working temperature is 90 °C (194°F), e.g. power cable with YJV cross-linked copper, insulated G and PVC sheath) is laying on the surface of slot. If working condition is different, please adjust the specification according to national standard.
- (3) Copper-core cable must be used.
- (4) The above sectional area is suitable for a maximum distance of 15m(49-1/5ft.). If it's over 15m(49-1/5ft.), sectional area must be expanded to prevent overload current from burning the wire or causing fire hazard.
- (5) Specification of circuit breaker is based on the working condition where the ambient temperature of circuit breaker is 40°C(104°F). If working condition is different, please adjust the specification according to national standard.
- (6) The air switch should include magnetic trip function and thermal trip function so that system can be protected from short circuit and overload.
- (7) An all-pole disconnection switch having a contact separation of at least 3mm(1/8inch) in all poles should be connected in fixed wiring.

4.5.3 Connection of power cord

▲WARNING

- (1) Before obtaining access to terminals, all supply circuits must be disconnected.
- (2) If units are type I electrical appliances, they must be reliably grounded.
- (3) Ground resistance must be in accord with requirements of local standard.
- (4) The green-yellow wire within units are ground wire. Do not use it for other purposes. Nor should it be cut off or secured by tapping screws. Otherwise, it may cause electric shock.
- (5) Power supply at user side must have reliable ground terminal. Do not connect ground wire to the following places:
 - 1) Water pipe.
 - 2) Gas pipe.
 - 3) Drainage pipe.
 - 4) Other places that are considered by professionals as unreliable.
- (6) Power cord and communication wire should be separated, with a distance of more than 20cm(7-7/8in.). Otherwise, system's communication may not work well.

Steps of power cord connection:

(1) Knock off the cross-through opening that's used for leading the external power cord, with the cross-through rubber ring on the opening. Then lead the cable through the opening. Connect L1, L2, L3 of power cord and ground wire separately to the positions on wiring board (for power supply) that are marked with L1, L2, L3 and the ground screw nearby.

- (2) Fasten the power cord with cable tie.
- (3) Lay the power cable and communication cable for the ODU according to the marker of external connection circuit diagram.

4.6 System Communication

4.6.1 Communication system include:

- (1) Communication among outdoor basic modules.
- (2) Communication between ODU and IDU.
- (3) Communication among IDUs.
- (4) Communication between IDU and wired controller.
- (5) Connection between IDU and light board receiver.
- (6) Communication between different refrigeration systems.
- (7) Graphics of general communication connection.
- (8) Communication among ODU's Convertor unit.

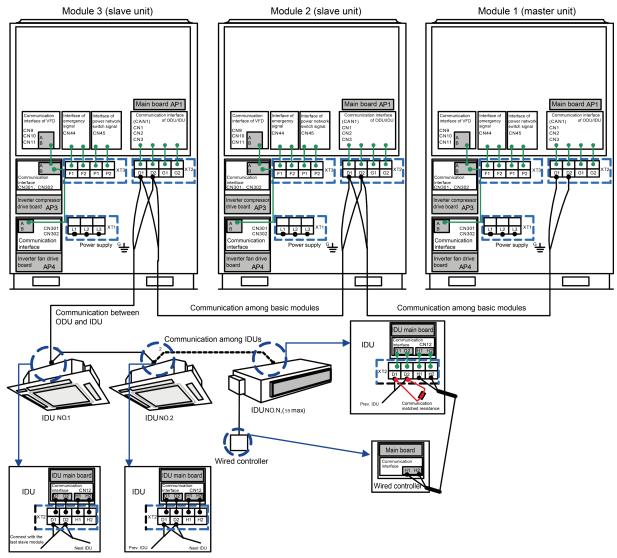


Fig.4.5.2

4.6.2 Communication mode of GMV DC Inverter Units

CAN bus mode is taken for communication between IDU and ODU and communication among IDUs.

4.6.3 Selection and connection mode I

4.6.3.1Select communication material

NOTICE! If air conditioners are installed at places where there's strong electromagnetic interference, the communication wire of IDU and wired controller must use shielded wire and the communication wire between IDU and IDU/ODU must use shielded twisted pair.

(1) Select communication wire between IDU and wired controller

Material type	Total length of communication line between IDU unit and wired controller L m(ft.)	Wire size	Remarks
Light/Ordinary polyvinyl chloride sheathed cord.	L≪250(820-1/5)	2×AWG18~ 2×AWG16	Total length of communication line can't exceed 250m(820-1/5ft.). The cord shall be Circular cord (the cores shall be twisted together). If unit is installed in places with intense magnetic field or strong interference, it is necessary to use shielded wire.

Graphic of connection between IDU and wired controller

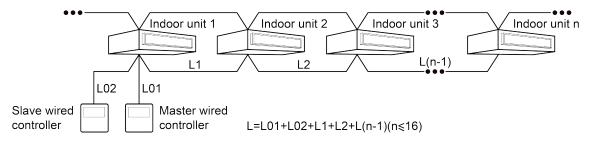
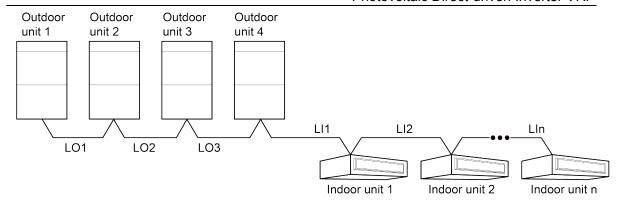
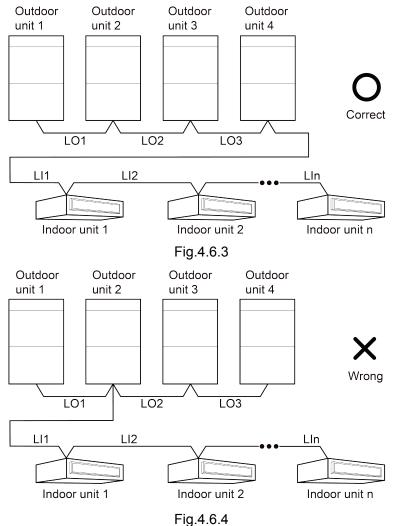
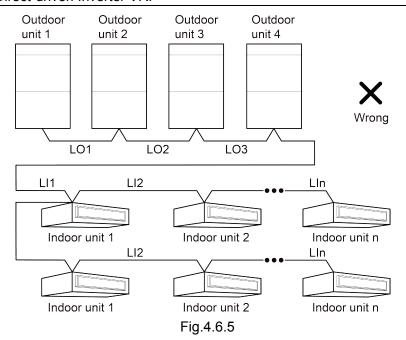


Fig.4.6.1

(2) Select communication wire between ODU and IDU

Material Type	Total Length L(m) of Communication Cable between IDU Unit and IDU (ODU) Unit m(ft.)	Wire size	Remarks
Light/Ordinary polyvinyl chloride sheathed cord.	L≤1000(3280-5/6)	≥2×AWG18	1. If the wire diameter is enlarged to 2 ×AWG16, the total communication length can reach 1500m(4921-1/4ft.). 2. The cord shall be Circular cord (the cores shall be twisted together). 3. If unit is installed in places with intense magnetic field or strong interference, it is necessary to use shielded wire.


Fig.4.6.2

NOTICE! All of the selected communication wire must be consistent with local laws and regulations.

4.6.3.2 Connection mode of communication

(1) All communication wires of GMV5 must be connected in series rather than in star.

(2) All communication wires are connected by screws.

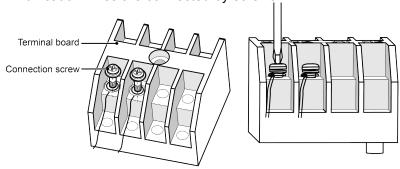


Fig.4.6.6

(3) If a single communication wire is not long enough and needs to be connected, the connected joint must be welded or pressure-welded. Do not simply twist the wires together.

4.6.4 Communication address

Auto addressing technology is adopted for Gree Photovoltaic Direct-driven Inverter VRF System IDU and ODU. No need to set address codes manually. Only the addresses of master unit and central control are needed to be set (address of central control is only needed when there are multiple refrigeration systems).

NOTICE! When installing remote monitor or central controller, displacement on indoor units' project codes must be made. Otherwise, there will be collision malfunction of the project codes. For detail operation methods, please refer to the Potovoltaic Multi VRF Installation and Maintenance Manual.

4.7 Connection Method and Steps for System Communication

4.7.1 Communication connection between IDU and ODU

NOTICE! The centralized controller can be installed when it is necessary.

Connect IDU and ODU via terminal D1/D2 of communication wiring board. Below are the connection graphics of single unit and modular units:

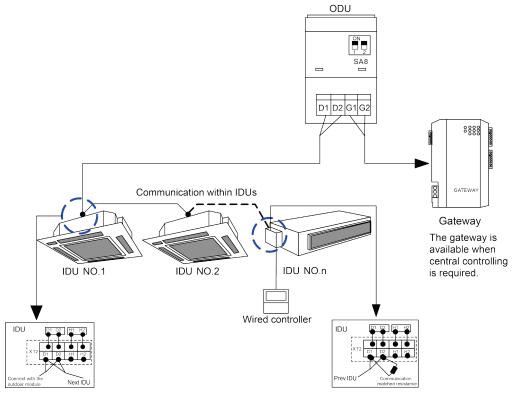


Fig.4.7.1 Connection of single unit

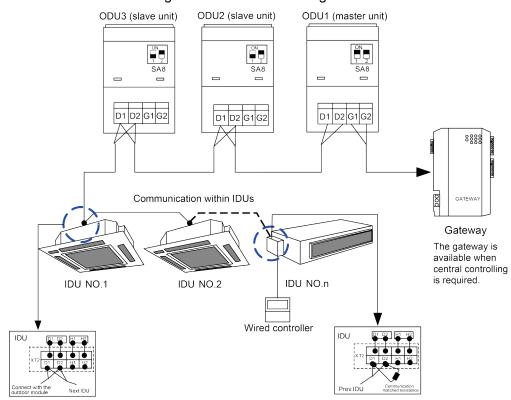


Fig.4.7.2 Connection of modular unit

NOTICE

- (1) For modular outdoor units, if there are multiple outdoor modules, then the master unit must be the first outdoor module on the communication wire and should not connect with IDU (master unit is set by SA8 of the outdoor main board).
- (2) For modular outdoor units, if there are multiple outdoor modules, then indoor units must be connected with the last slave module of ODU (slave module is set by SA8 of the outdoor main board).
- (3) Communication wire and power cord must be separated.
- (4) Communication wire must be of proper length. Extension is not allowed.
- (5) IDUs must be connected in series. The last IDU must be connected with the communication matched resistance (supplied in the list of ODU spare parts).

4.7.2 Communication connection between IDU and wired controller

There are 4 kinds of connection between IDU and wired controller, as shown below:

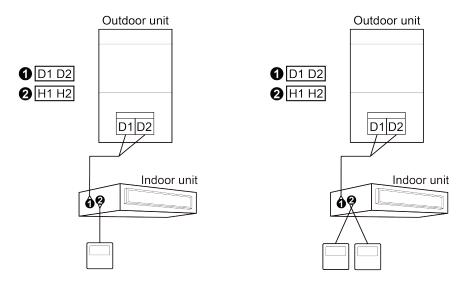


Fig.4.7.3 One wired controller controls one IDU Fig.4.7.4 Two wired controllers controls one IDU

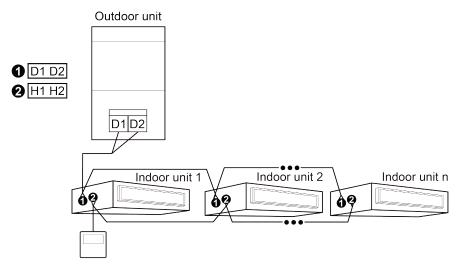


Fig.4.7.5 One wired controller controls multiple IDUs

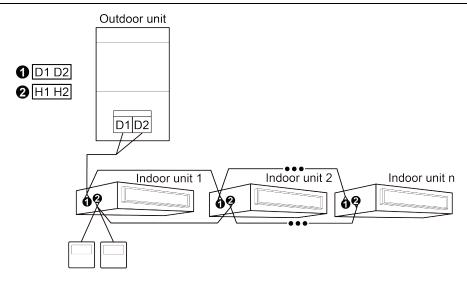


Fig.4.7.6 Two wired controllers control multiple IDUs

When two wired controllers control multiple IDUs, the wired controller can be connected to any one IDU, provided that the connected IDU is of the same series. Meanwhile, one and only one of the wired controllers must be set as a slave controller. At most 16 IDUs can be controlled by wired controllers and the connected IDUs shall be within a same IDU network.

No matter when unit is turned on or off, slave controller can be set.

How to set a slave controller: hold "function" button on the designated controller for 5s, and temperature zone displays C00. Continue holding "function" button for 5s and setting screen of controller parameter will come out. Default temperature zone displays P00.

Press \wedge button or \vee button to select parameter code P13. Press "mode" button to switch to setup of parameter values. Then the parameter value will blink. Press \wedge button or \vee button to select code 02. And then press "confirm/cancel" to finish setting.

Press "confirm/cancel" to return to the previous display until you exit from the setup of parameter values.

Below are user's parameter settings:

Parameter code	Parameter name	Parameter scope	Default value	Remark
P13	Set up address for wired controller	01: master wired controller 02: slave wired controller	01	When 2 wired controllers control one or more IDUs, they shall have different addresses. Slave wired controller (02) can't set up units' parameters except its own address.

4.7.3 Communication connection of central controlling units

NOTICE! The centralized controller can be installed when it is necessary.

Port connection G1 and G2 on the communication wiring board of master unit among each multi VRF system (see below).

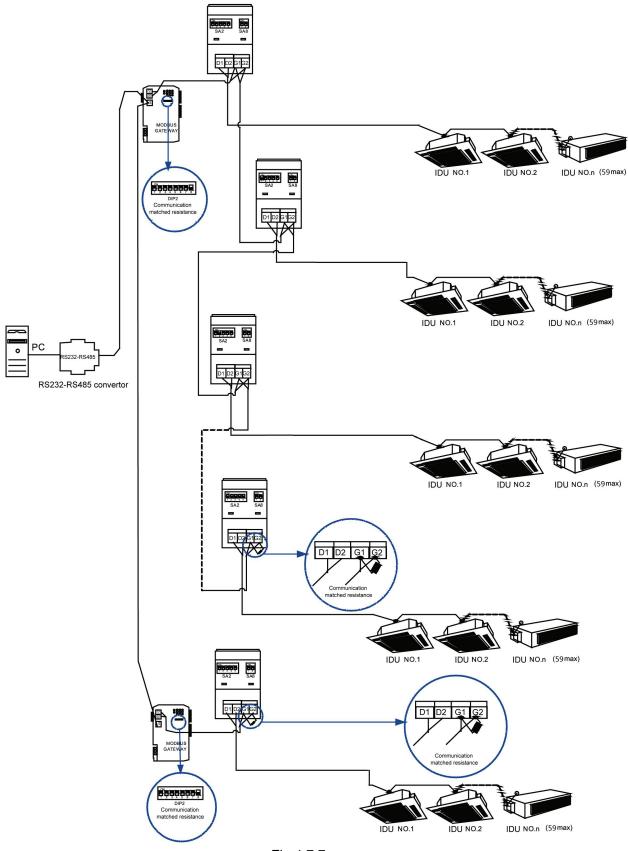


Fig.4.7.7

4.8 External Electrical Wiring Diagram

AWARNING

- (1) Every unit should be equipped with a circuit breaker for short-circuit and overload protection. In general, circuit breaker is at OFF status.
- (2) During operation, all indoor units and outdoor units belonging to the same system must be kept energized status. Otherwise, the unit can't operate normally.

4.8.1 External wiring diagram of a single unit

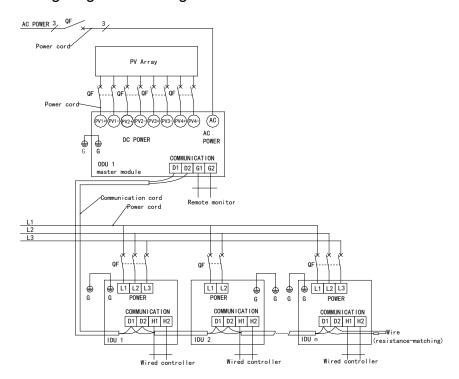


Fig.4.8.1

NOTICE! Maximum number of IDU is based upon ODU capacity. For details, please refer to the introduction of units' combination.

PV Array (AC) (AC) (AC) AC POWER AC POWER DC POWER DC POWER G ē COMMUNICATION COMMUNICATION ODU 2 ODU 1 ODU n D1 D2 G1 G2 D1 D2 G1 G2 D1 D2 G1 G2 ₾ L1 L2 L3 L1 L2 COMMUNICATION D1 D2 H1 H2 D1 D2 H1 H2 D1 D2 H1 H2 IDU 2 IDU 1 (resistance-matching)

4.8.2 External wiring diagram of modular connection

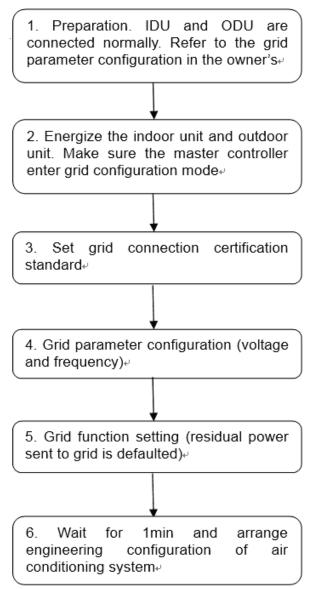
Fig.4.8.2

Wired controller

Wired controller

NOTICE! Maximum number of ODU (N) and maximum number of IDU (n) are based upon the combination type of ODU. For details, please refer to the introduction of units' combination.

4.9 Installation of Photovoltaic System


Wired controller

4.9.1 Notice for installation

Improper operation or not following operation instruction may cause safety hazards and serious damage to hardware, or even property loss or personal injury. Please read this manual carefully and follow all safety instructions listed below.

- (1) Before installation, please cut off all connections between air conditioner, electric network and photovoltaic. Use the specialized tool (packing materials in the unit) to remove the positive pole and negative pole of photovoltaic input cable; pay attention to the removed photovoltaic input cable terminal to avoid electric shock; do not touch the terminal or conductor connected with the grid and photovoltaic input circuit; any connection point between air conditioner and grid may cause fire hazard or electric shock.
- (2) The air conditioner may have unrecoverable damage due to electric discharge of internal component. When operating this device, please follow the static power protection regulation.
- (3) Electric shock and fire hazard may cause electric leakage hazard. Before connecting the photovoltaic and grid, please ensure the air conditioner is reliably grounded.

- (4) Any operation for this device must be done by relevant professionals; if maintenance of the system is needed, please contact related professionals; pay attention to the safety notice listed in all safety instructions and installation documents.
- (5) Grid parameter configuration.

Detailed instructions:

- Step 1: make sure the engineering connection of air conditioning system is normal. Refer to the grid parameter configuration in the owner's manual;
- Step 2: Energize the indoor unit and outdoor unit for the first time. The master controller enters grid configuration selection mode (LED1 function code qp, on);
 - Step 3: Under LED1 function code qp status, set grid connection standard;
 - Step 4: Under LED1 function code qU status, set grid voltage type (voltage and frequency);
- Step 5: Under LED1 function code qn status, set the function for residual power sending to the grid (residual power sent to grid is defaulted);
- Step 6: setting is done; wait for 1min and arrange configuration and debugging of air conditioning system.

NOTICE!

- ① If configuration is not done in initial energization, the unit will stay in standby status and cannot operate normally. For detailed configuration procedures, please refer to related instructions in the owner's manual.
- ② Above configuration shall be done by the professional engineering personnel who is accredited by Gree. Customer shall not change the configuration; otherwise unit malfunction may be caused.

4.9.2 Installation project of photovoltaic system

The system construction is as below. The installation of photovoltaic system mainly includes the installation of Photovoltaic Array and GMV, the lay-out of cable and power device.

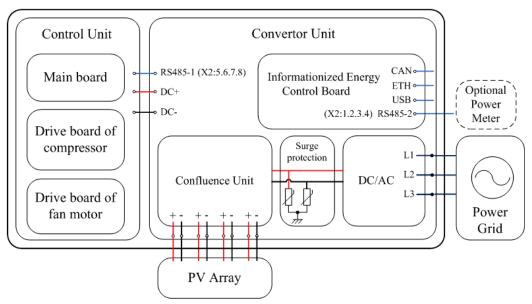


Fig.4.9.1

4.9.2.1 Installation of photovoltaic sub-assy support

The support of photovoltaic sub-assy shall be inspected by Party A and professional supervision unit before installation. The material of support shall be aluminium alloy or hot galvanizing steel. During installation, please avoid scratching to the aluminium alloy surface or galvanizing layer.

During installation, please place the transition unit(connected with house panel), main keel, subaltern keel(if needed) and other parts separately, and then hang them uniformly. Calculate the correct quantity of each row according to the quantity of photovoltaic sub-assy of each row, including the quantity of bolt and other accessories. Firstly, fix the transition unit in the house panel. Secondly, fix the corresponding main keel and subaltern keel(if needed) on it. Then connect each part together with bolt. Tighten the bolt by hand and then tighten it by manual spanner or electric spanner. Meanwhile, check and adjust the straight degree with nylon wire.

After finishing installation, clear the installation site.

4.9.2.2 Installation of photovoltaic battery sub-assy

The photovoltaic battery sub-assy shall be checked by related department of Party A before using. Common photovoltaic battery sub-assy is shown as below.

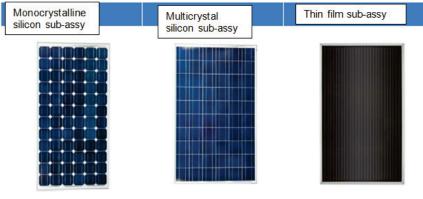


Fig.4.9.2

Place it carefully during transportation to avoid collision among photovoltaic sub-accessories and among photovoltaic sub-accessories and supports. The photovoltaic sub-accessories shall be placed on the keel and fixed by pressing. Press them properly in order to avoid strong wind and earthquake. Meanwhile, avoid damage to the glass due to pressing. Place the photovoltaic sub-accessories orderly and the wiring box shall be placed on the upper end.

4.9.2.3 Lay-out of cables

The cables shall be laid orderly. Roll the cable shaft for short distance transportation. The cable educing end shall be at the top of shaft. Reduce attrition with the floor during traction. Install corresponding cable bridge support. Each wire must be straight and cannot be curved.

The cable shall be reserved with sufficient wiring length at the two ends in junction case and DC power cabinet, and stuck with label at the end. The cable shall be protected by steel pipe when crossing the road. The pipe port shall be deburred to avoid cutting the cable during pulling.

During laying wire, make sure the wire size according to the diagram. Before laying, check if the insulation resistance is in normative range with mega meter.

The cable shall be protected by HDPE plastic pipe when passing through the photovoltaic sub-assy and junction case. The cable shall be protected by steel pipe when crossing the road. The pipe port shall be deburred to avoid cutting the cable. The bridge support in vertical installation shall be firm with straight line deviation within 0.5cm and cannot damage the inner wall structure.

4.9.2.4 Installation and wiring of power devices

Check the power devices according to devices list, engineering diagram and technical document before installation, in order to check if the devices, their accessories, certificate of qualification, technical document and instruction manual are completed. Please tighten the screw used in installation and check the installation strength.

Installation of: Install it according to the engineering diagram. The cabinet shall be grounded and each cabinet shall be connected with the base separately. Check if all electronic components in the cabinet are in accordance with the principle diagram. Check if the rated voltage and control and operation power voltage are in accordance with the related requirement. Finally, adjust the overcurrent circuit breaker of cabinet, relays and mechanical linkage.

5 Check Items after Installation and Trial Run

5.1 Check Items after Installation

Check Items	Conditions Might Happen	Check
Has the unit been fixed firmly?	The unit may drop, shake or emit noise.	
Have you done the gas leakage test?	It may cause insufficient cooling/heating capacity.	
Is the unit get proper thermal insulation?	It may cause condensation and dripping.	
Does the unit drain well?	It may cause condensation and dripping.	
Is the voltage in accordance with the rated voltage specified on the nameplate?	It may cause malfunction or damage the part.	
Is the electric wiring and piping connection installed correctly and securely?	It may cause malfunction or damage the part.	
Has the unit been earthed securely?	It may cause electrical leakage.	
Is the power cord specified?	It may cause malfunction or damage the part.	
Has the inlet and outlet been blocked?	It may cause insufficient cooling/heating capacity.	
Has the pipe length and refrigerant charging	The refrigerant charging amount is not	
amount been recorded?	accurate.	
Is the address code of outdoor modules correct?	The unit cannot run normally. Communication malfunction might happen.	
Is the address code of indoor units and wired controller correct?	The unit cannot run normally. Communication malfunction might happen.	
Has the communication line been connected correct?	The unit cannot run normally. Communication malfunction might happen.	
Is the piping connection and valve status right?	The unit cannot run normally.	
Whether phase sequence of external power cord is correct or not?	Operation failure occurs or unit is damaged.	
Whether the engineering piping work and wiring holes are sealed?	Maybe there are mice biting the wires, which is the cause of malfunction.	

5.2 Trial Run

NOTICE! During debugging, one and only one module must be set as a master module.

During debugging, one and only one IDU must be set as a master IDU.

Before debugging, grid parameter must be configured firstly.

When no special requirement is needed, no need to set other functions. Unit can operate according to ex-factory settings. When special requirement is needed, please read the Service Manual or Debugging and Maintenance Manual.

5.2.1 Preparation before trial run

- (1) The power supply should be turned on only after finishing all the installation.
- (2) All the control wires and cables are connected correctly and safely. Completely open the gas and liquid valves.

- (3) All the objects like metal filing, thrum and clip should be cleared after installation.
- (4) Check if the unit appearance and piping system is damaged or not due to transportation.
- (5) Check if the terminals of electrical element is loose and the phase sequence is correct or not.
- (6) Check the valve: For single-module unit, fully open the gas and liquid valve and close oil balance valve; For dual/three module unit, fully open the gas, liquid valve and oil balance valve.

5.2.2 Trial Run

5.2.2.1 Notices

- (1) Before test operation, make sure unit is power on and compressor has been preheated for more than 8 hours. Touch the unit to check whether it's normally preheated. Start test operation after unit is normally preheated, otherwise compressor might be damaged. Debugging must be performed by professional technicians or under the guide of professional technicians.
- (2) When debugging starts, system will operate according to the ambient temperature.
 - 1)When outdoor temperature is above 20°C(68°F), debugging shall be in cooling mode.
 - 2)When outdoor temperature is below 20°C (68°F), debugging shall be in heating mode.
- (3) Before debugging, confirm again whether the cut-off valve of each basic module is fully turned on.
- (4) During debugging, front panel of the outdoor unit must be fully closed; otherwise, debugging accuracy will be affected.
- (5) Before debugging, make sure the needed amount of refrigerant has been added to the pipe or at least 70% of the needed refrigerant has been added.

5.2.2.2 Description of each stage of debugging progress

Grid parameter configuration must be done before debugging (grid connection certification standard setting, grid parameter configuration and setting of residual power sending to the grid); otherwise, debugging is allowed. Detailed operation is as below:

Instruction:

- 1) No setting is defaulted before ex-factory, which is 0 (except the setting of residual power sending to the grid);
- 2) After energization, if master controller hasn't detected no setting for the following configuration, it will enter the setting interface of grid connection certification directly.

(qΡ	Flicker	00	Flicker	00	Flicker	Grid connection certification standard setting
(qU	Flicker	00	Flicker	00	Flicker	Grid parameter configuration
	qn	Flicker	00	Flicker	licker 00 Flicker Setting of residual power sending		Setting of residual power sending to the grid

After the photovoltaic unit enters the function, qp is defaulted.

Grid connection certification standard setting, grid parameter configuration and setting of residual power sending to the grid must be done before debugging or turning on the unit.

- 3)If it is in the interface not for setting function, press SW3 function button to enter function setting interface and select related function configuration to modify configuration.
- 4)Power failure memory is available, you don't need to set again; hold on pressing SW8 reset button to resume factory default settings.
- (1) Grid connection certification standard setting:

After entering this function setting, default display of master unit is as below. Other basic modules will display according to normal operation mode:

LED1		LE	D2	LED3	
Function Code	Display Mode	Current Progress	Display Mode	Current Status	Display Mode
qP	On	00	Flicker	оС	Flicker

Press SW1 ▲ button and SW2 ▼ button to select the following grid connection certification standard setting.

LED1		LED2		LED3	
Function Code	Display Mode	Grid connection	Display Mode	Current Status	Display Mode
qΡ	On	1~3	Flicker	оС	Flicker

After selecting corresponding grid connection certification standard setting, press SW7 to confirm the selected mode. Corresponding display of all modules are as below:

LED1		LED2		LED3	
Function Code	Display Mode	Grid connection	Display Mode	Current	Display Mode
qΡ	On	1~3	On	οС	On

Master unit will memorize this setting and the setting won't be cleared in power failure.

For the master unit in this case, press SW6 return button to return to the operation of last step.

For the master unit in this case, if no button is pressed for 5min continuously, it will exit automatically and the unit will resume the display of current status.

Note:

110101	10101							
No.	Standard	Applicable areas						
1	NB/T 32004	China						
2	IEC 61727	Middle East, Southeast Asia, Europe, etc.						
3	IEEE 1547.1(ETL)	North America, etc.						

(2) Grid parameter configuration:

After entering this function setting, default display of master unit is as below. Other basic modules will display according to normal operation mode:

LED1		LED2		LED3			
Function Code	Display Mode	Current Progress	Display Mode	Current Status	Display Mode		
qU	On	00	Flicker	00	On		

Press SW1 ▲ button and SW2 ▼ button to select the voltage.

LED1		LEI	D2	LED3	
Function Code Display Mode		de Voltage selection Display Mode		Current Status	Display Mode
Up	On	1~7	Flicker	00	On

After selecting corresponding voltage, press SW7 to confirm the selected mode. Meanwhile, LED3 display is flickering, which means entering frequency configuration. Corresponding display of all modules are as below:

LED1		LE	D2	LED3	
Function Code	Display Mode	Voltage selection Display Mode		Current Status	Display Mode
qU	On	1~7	On	00	Flicker

Press SW1 ▲ button and SW2 ▼ button to select the frequency.

LE	D1	LE	D2	LED3		
Function Code	Display Mode	Frequency	Display Mode	Current Status	Display Mode	
qU	On	1~7	On	1~2	Flicker	

After selecting corresponding frequency, press SW7 to confirm the selected mode. Corresponding display of all modules are as below:

LE	D1		D2	LED3		
Function Code	Display Mode	Frequency	Display Mode	Current Status	Display Mode	
qU	On	1~7	On	1~2	On	

Master unit will memorize this setting and the setting won't be cleared in power failure.

For the master unit in this case, press SW6 return button to return to the operation of last step.

For the master unit in this case, if no button is pressed for 5min continuously, it will exit automatically and the unit will resume the display of current status.

Note: grid voltage type configuration

Voltage selection

No.	3-phase voltage
1	415
2	400
3	380
4	240
5	230
6	220
7	208

Frequency configuration

No.	Grid frequency
1	50
2	60

(3) Setting of residual power sending to the grid

After entering this function setting, default display of master unit is as below. Other basic modules will display according to normal operation mode:

LE	D1	LE	D2	LED3		
Function Code	Display Mode	Current Progress	Display Mode	Current Status	Display Mode	
qn	On	00	Flicker	оС	Flicker	

Press SW1 ▲ button and SW2 ▼ button to select the following setting of residual power sending to the grid

LE	D1	LED2		LED3		
Function Code	Display Mode	Setting of residual	Display Mode	Current	Display Mode	
qn	On	1~2	Flicker	οС	Flicker	

After selecting corresponding setting of residual power sending to the grid, press SW7 to confirm the selected mode. Corresponding display of all modules are as below:

LE	D1	LED2		LED3		
Function Code	Display Mode	Setting of residual	Display Mode	Current	Display Mode	
qn	On	1~2	On	οС	On	

Master unit will memorize this setting and the setting won't be cleared in power failure.

For the master unit in this case, press SW6 return button to return to the operation of last step.

For the master unit in this case, if no button is pressed for 5min continuously, it will exit automatically and the unit will resume the display of current status.

Note:

No.	Grid connection function
1	Residual power sending to the grid (defaulted)
2	Residual power no sending to the grid

	Description of each stage of debugging progress										
-	Debugging code		Progress code		Statu	s code					
	LE	ED1	L	ED2	LE	ED3	Meaning				
progress	Code	Display status	code	Display status	code	Display status					
	db	light	01	light	A0	light	System is not debugged.				
01_Set up	db	light	01	light	CC	light	System doesn't have master unit. Reset master unit.				
master unit	db	light	01	light	CF	light	More than 2 master units are set. Reset master unit.				
	db	light	01	light	ОС	light	Master unit is successfully set. Start next progress.				
	db	light	02	light	Ad	blink	System is allocating addresses.				
02_Allocate addresses	db	light	02	light	L7	blink	Master IDU is not set. Please set master IDU. If it's not set in 1min, system will set the master IDU randomly.				
	db	light	02	light	ОС	light	Allocation is finished. Start next progress.				
03_Confirm the	db	light	03	light	01~04	blink	LED3 displays the quantity of modules. Confirm the number manually.				
quantity of modules	db	light	03	light	ОС	light	System has confirmed the quantity of modules. Start next progress.				
04_Confirm the	db	light	04	light	01~80	blink	LED3 displays the quantity of IDUs. Confirm the number manually.				
quantity of IDUs	db	light	04	light	ОС	light	System has confirmed the quantity of IDUs. Start next progress.				
05 Detect	db	light	05	light	C2	light	System detects "driven communication error between master unit and inverter compressor".				
internal communication	db	light	05	light	C3	light	System detects "driven communication error between master unit and inverter fan".				

Description of each stage of debugging progress									
-		ugging ode	Progress code		Statu	s code			
	LED1		LED2		LED3		Meaning		
progress	Code	Display status	code	Display status	code	Display status			
05_Detect	db	light	05	light	СН	light	IDU/ODU "high proportion of rated capacity".		
internal communication	db	light	05	light	CL	light	IDU/ODU "low proportion of rated capacity".		
	db	light	05	light	OC	light	Detection is finished. Start next progress.		
06_Detect outdoor	db	light	06	light	Error code	light	System detects error in outdoor components.		
components	db	light	06	light	ОС	light	No error in outdoor components. Start next progress.		
07_Detect indoor components	db	light	07	light	XXXX/ Error code	light	System detects error in indoor components. XXXX is the project no. of the faulted IDU. 3s later, relevant error code is displayed. For example, IDU no. 100 has d5 error, then LED3 displays like this: 01 (2s later) 00 (2s later) d5, and repeat again.		
	db	light	07	light	OC	light	No error in indoor components. Start next progress.		
08_Confirm	db	light	08	light	U0	light	Preheat time for compressor is less than 8h.		
preheated compressor	db	light	08	light	ОС	light	Preheat time for compressor is 8h. Start next progress.		
09_Refrigerant judgments	db	light	09	light	U4	light	System refrigerant is not enough. System downtime equilibrium pressure is lower than 0.3MPa(4-2/5psig).		
before startup	db	light	09	light	ОС	light	System refrigerant is normal. Start next progress.		
10_Status	db	light	10	light	ON	light	Outdoor valves are being turned on.		
judgments of outdoor valves	db	light	10	light	U6	light	Outdoor valves are not fully turned on.		
before startup	db	light	10	light	ОС	light	Outdoor valves are turned on normally.		
11_Calculate refrigerant quantity manually	db	light	11	light	AE	light	Calculate the refrigerant quantity manually and confirm the perfusion status of refrigerant (the quantity of refrigerant added into the system must be recorded accurately).		
12_Confirm	db	light	12	light	AP	blink	Ready for units to start debugging.		
debugging startup	db	light	12	light	AE	light	Manual calculation of refrigerant quantity is set up.		
13_	-	-	-	-	-	-	no meaning.		

Description of each stage of debugging progress									
-	Debugging code		Progr	ess code	Statu	s code			
	LE	ED1	L	ED2	LE	ED3	Meaning		
progress	Code	Display status	code	Display status	code	Display status			
14_	-	-	-	-	-	-	no meaning.		
	db	light	15	light	AC	light	Debugging is enabled in cooling mode (debugging mode, auto-selected by system).		
	db	light	15	light	Error code	light	Error occurs during debugging in cooling mode.		
15_Cooling debugging	db	light	15	light	J0	light	Error of other modules occurs during debugging in cooling mode.		
	db	light	15	light	U9	light	Outdoor pipeline and valves are not normal.		
	db	light	15	light	XXXX/ U8	light	System detects error in indoor pipeline. XXXX is the project no. of the faulted IDU. 3s later, error code U8 is displayed. For example, IDU no. 100 has U8 error, then LED3 displays like this: 01 (2s later) 00 (2s later) U8, and repeat again.		
	db	light	16	light	АН	light	Debugging is enabled in heating mode (debugging mode, auto-selected by system).		
	db	light	16	light	Error code	light	Error occurs during debugging in heating mode.		
16 Heating	db	light	16	light	J0	light	Error of other modules occurs during debugging in heating mode.		
debugging	db	light	16	light	U9	light	Outdoor pipeline and valves are not normal.		
	db	light	16	light	XXXX/ U8	light	System detects error in indoor pipeline. XXXX is the project no. of the faulted IDU. 3s later, error code U8 is displayed. For example, IDU no. 100 has U8 error, then LED3 displays like this: 01 (2s later) 00 (2s later) U8, and repeat again.		
17_Debugging finished	01~04	light	OF	light	OF	light	Debugging is finished. System is on standby condition. LED1 displays module address. LED2 and LED3 display "OF".		

5.2.2.3 Debugging operation mode

Gree Photovoltaic Direct-driven Inverter VRF System has two debugging modes: one is direct operation on main board of outdoor units while the other is PC operation via special software. In PC software debugging, indoor/outdoor parameters can be displayed and historical data can be recorded and inquired. (Operation details can be found in relevant instruction manuals)

Debugging through operation on main board of outdoor units

In this debugging mode, following debugging functions are included on the main board:

- Step 1: front panel of the outdoor units must be fully closed. Open the debugging window of each basic module;
- Step 2: disconnect power for outdoor units. According to design requirements of external static pressure, set up corresponding static pressure mode for the units. Setting methods can be seen in Outdoor Fan Static Pressure Setup SA6_ESP_S;
- Step 3: disconnect power for outdoor units and set one module as a master unit. Setting methods can be seen in Master Unit Setup SA8_MASTER_S;
- Step 4: Connect power for all indoor units. Make sure all IDUs are power on. Then all outdoor modules will display "Debugging not enabled";
- Step 5: Find the module with "01" module address to be the master module. Hold SW7 button on the master module for at least 5s to enable debugging;
- Step 6: Wait. Unit will then start progress 01 and 02; in progress 01, if master unit is not correctly set, progress 01 will show the following errors:

-	Debugging Code		Progress Code Status Code		Code		
	L	ED1	LED2		LED3		Meaning
Progress	Code	Display status	Code	Display status	Code	Display status	
	db	light	01	light	СС	light	System doesn't have master unit. Reset master unit.
01_01 Set up master unit:	db	light	01	light	CF	light	More than 2 master units are set. Reset master unit.
uillt.	db	light	01	light	ОС	light	Master unit is successfully set. Start next progress.

According to the above errors, reset the master unit as instructed in Master Unit Setup SA8 MASTER S. After reset is finished, start debugging again.

In progress 02, if master IDU is not detected, then progress 02 will show the following errors:

LE	D1	LE	D2	LED3		
Function code	Display mode	Current progress	Display mode	Current status	Display mode	
db	light	02	light	L7	blink	

At this time, all buttons are ineffective. Set master IDU in 1min via debugging software. If master IDU is not set in 1min, system will set up a master IDU randomly. After that, system will start next progress.

Step 7: in progress 03, the quantity of modules needs to be confirmed manually. Main board of each module will display:

-	Debuggi	ing code	Progres	ss code	Status code		
	LE	D1	LE	D2	LED3		
Progress	Code	Display status	Code	Display status	Code	Display status	
03_Quantity of modules	db	light	03	light	Quantity of modules	blink	

If the quantity displayed is the same with actual quantity, then press SW7 confirmation button on the master unit to confirm it. Unit will start next progress:

-	Debugg	ing code	Progres	ss code	Status code		
	LE	D1	LE	D2	LED3		
Progress	Code	Display status	Code	Display status	Code	Display status	
03_Confirm the quantity of modules	db	light	03	light	ос	light	

If the quantity displayed is different from actual quantity, then disconnect power and check whether communication wire among each module is correctly connected. After the check, start debugging again.

Step 8: in progress 04, the quantity of IDUs needs to be confirmed manually. Main board of each module will display:

-	Debugg	ing code	Progres	ss code	Status code		
	LE	D1	LE	D2	LED3		
Progress	Code	Display status	Code	Display status	Code	Display status	
04_Confirm the quantity of IDUs	db	light	04	light	Quantity of connected IDUs	blink	

If the quantity displayed is the same with actual quantity, then press SW7 confirmation button on the master unit to confirm it. Unit will start next progress:

-	Debuggi	ng code	Progres	ss code	Status code		
	LE	D1	LE	D2	LED3		
Progress	Code	Display status	Code	Display status	Code	Display status	
04_Confirm the quantity of IDUs	db	light	04	light	ос	light	

Step 9: progress 05 is "Detect internal communication"

If no error is detected, system will display as below and then start next progress.

-	Debug	ging code	Progr	ess code	Statı	us code		
	L	ED1	L	ED2	L	ED3	Meaning	
progress	Code	Display status	code	Display status	Code	Display status	wearing	
05_Detect internal communication	db	Light	05	Light	ОС	Light	Detection is finished. Start next progress.	

If error is detected, system will stay at current progress. Error has to be solved manually. Below are relevant errors:

-	Debug	ging code	Progr	Progress code		us code		
	LED1		L	LED2		ED3	Meaning	
progress	Code	Display status	Code	Display status	Code	Display status	Wicaring	
	db	light	05	light	C2	light	System detects "driven communication error between master unit and inverter compressor".	
05_Detect	db	light	05	light	C3	light	System detects "driven communication error between master unit and inverter fan".	
communication	db	light	05	light	СН	light	IDU/ODU "high proportion of rated capacity".	
	db	light	05	light	CL	light	IDU/ODU "low proportion of rated capacity".	

Elimination methods of above errors can be found in Troubleshooting.

Step 10: progress 06 is "Detect outdoor components"

If no error is detected, system will display as below and then start next progress.

-	Debug	ging code	Progr	ress code Status code		us code		
	LED1		LED2		LED3		Magning	
progress	Code	Display status	Code	Display status	Code	Display status	Meaning	
06_Detect outdoor components	db	light	06	Light	ос	light	No error is detected in outdoor components. Start next progress.	

If error is detected, system will stay at current progress. Error has to be solved manually. Below is relevant error:

-	Debug	ging code	Progr	Progress code		ıs code		
	L	ED1	L	ED2	LED3		Mooning	
progress	Code	Display status	Code	Display status	Code	Display status	Meaning	
06_Detect outdoor components	db	light	06	light	Error code	light	System detects error in outdoor components.	

Elimination methods of above error can be found in Troubleshooting.

Step11: progress 07 is "Detect indoor components"

If no error is detected, system will display as below and then start next progress.

-	Debug	ging code	Progress code Status code		us code			
	LED1		LED2		LED3		Meaning	
progress	Code	Display status	Code	Display status	Code	Display status	Meaning	
07_Detect indoor components	db	light	07	light	ос	light	No error is detected in indoor components. Start next progress.	

If error is detected, system will stay at current progress. Error has to be solved manually. Below is relevant error:

-	Debug	ging code	Progr	ess code	Status code			
	LED1 LED2 LED3		Meaning					
progress	Code	Display status	Code	Display status	Code	Display status	weaming	
07_Detect indoor components	db	light	07	light	XXXXor Error code	light	System detects error in indoor components.	

XXXX is the project no. of the faulted IDU. 3s later, relevant error code is displayed. For example, IDU no. 100 has d5 error, then LED3 displays like this: 01 (2s later) 00 (2s later) d5, and repeat again.

Elimination methods of above error can be found in Troubleshooting.

Step 12: progress 08 is "Confirm preheated compressor"

If more than 8h of preheat time is detected, system will display as below and start next progress.

-	Debug	ging code	Progr	ess code	Status code			
	LED1 I		L	LED2		ED3	Meaning	
progress	Code	Display status	Code	Display status	Code	Display status	weariing	
08_Confirm preheated compressor	db	light	08	light	ос	light	Preheat time for compressor is 8h. Start next progress.	

If less than 8h of preheat time is detected, system will give error alarm and display as below. Then press SW7 confirmation button to skip the wait time and start next progress. But this will cause force start of the compressor, which may damage the compressor.

-	Debug	ging code	Progr	Progress code		us code	
	L	ED1	L	ED2	D2 LED3		Meaning
progress	Code	Display status	Code	Display status	Code	Display status	Wearing
08_Confirm preheated compressor	db	light	08	light	UO	light	Preheat time for compressor is less than 8h.

Step 13: progress 09 is "Refrigerant judgments before startup"

If the refrigerant quantity inside the system meets the requirement of operation startup, system will display as below and start next progress.

-	Debug	ging code	Progr	ess code	Stati	us code	
	L	ED1	LED2		LED2 LED3		Meaning
progress	Code	Display status	Code	Display status	Code	Display status	Wearing
09_Refrigerant judgments before startup	db	light	09	light	ОС	light	System refrigerant is normal. Start next progress.

If there's no or not enough refrigerant in the system to meet the requirement of operation startup, system will display U4 "refrigerant shortage protection" and fails to start next progress. Then check if there's any leakage or add refrigerant inside until error eliminated.

-	Debug	ging code	Progr	Progress code		us code	
	LED1		LED2		LED3		Meaning
progress	Code	Display status	Code	Display status	Code	Display status	Wearing
09_Refrigerant judgments before startup	db	light	09	light	O4	light	System refrigerant is not enough. System downtime equilibrium pressure is lower than 0.3MPa(4-2/5psig).

Step 14: progress 10 is "Status judgments of outdoor valves before startup"

If master unit displays below, status judgments are enabled.

-	Debug	bugging code		Progress code		us code	
	L	ED1	L	LED2		ED3	Meaning
progress	Code	Display status	Code	Display status	Code	Display status	Wearing
10_Status judgments of outdoor valves before startup	db	light	10	light	ON	light	Outdoor valves are being turned on.

If unit detects that valve status is not normal, it will display as below:

-	Debug	ging code	code Progress code		Stati	us code	
	L	ED1	L	LED2		ED3	Meaning
progress	Code	Display status	Code	Display status	Code	Display status	Wearing
10_Status judgments of outdoor valves before startup	db	light	10	Light	U6	light	Outdoor valves are not fully turned on.

Then check the big and small valves whether they are fully turned on. After the check, press SW6 return button to restart the judgments.

If unit detects that valve status is normal, it will display as below and start next progress.

-	Debug	ging code Progress		ess code Status		us code	
	L	ED1	LED2		LED3		Meaning
progress	Code	Display status	Code	Display status	Code	Display status	Wearing
10_Status judgments of outdoor valves before startup	db	light	10	light	ос	light	Outdoor valves are turned on normally.

Step 15: progress 11 is "Calculate refrigerant quantity manually"

No need to operate. System will start next progress.

Step 16: progress 12 is "Confirm debugging startup"

In order to make sure all preparation work is done before startup, this step is designed for user to confirm the startup again. Operate as below:

If master unit displays as below, system is waiting for confirmation signal.

-	Debug	ging code	Progress code		Stati	us code	
	L	ED1	L	ED2	LED3		Meaning
progress	Code	Display status	Code	Display status	Code	Display status	
12_Status judgments of outdoor valves before startup	db	light	12	Light	AP	Blink	Ready for units to start debugging.

If it's confirmed, press SW7 confirmation button. Unit will display as below and start next progress.

-		ougging code	Progress code		Stati	us code	
	L	ED1	LED2		L	ED3	Meaning
progress	Code	Display status	Code	Display status	Code	Display status	
12_Status judgments of outdoor valves before startup	db	light	12	light	AE	liant	Manual calculation of refrigerant quantity is set up.

Step 17: after unit is confirmed to start debugging, system select cooling/heating mode according to ambient temperature.

A If cooling mode is selected, relevant display is as below:

-		ugging ode	Progr	ess code	Status	code	
	L	ED1	L	ED2	LED	3	Meaning
progress	Code	Display status	Code	Display status	Code	Display status	
	db	light	15	light	AC	light	Debugging is enabled in cooling mode (debugging mode, auto-selected by system).
	db	light	15	light	Error code	light	Error occurs during debugging in cooling mode.
	db	light	15	light	J0	light	Error of other modules occurs during debugging in cooling mode.
15_Cooling debugging	db	light	15	light	U9	light	Outdoor pipeline and valves are not normal.
	db	light	15	light	XXXX/U8	light	System detects error in indoor pipeline. XXXX is the project no. of the faulted IDU. 3s later, error code U8 is displayed. For example, IDU no. 100 has U8 error, then LED3 displays like this: 01 (2s later) 00 (2s later) U8, and repeat again.

B If heating mode is selected, relevant display is as below:

-		ugging ode	Progr	ess code	Status	code	
	L	ED1	L	ED2	LEC)3	Meaning
progress	Code	Display status	Code	Display status	Code	Display status	
	db	Light	16	light	AE	light	Debugging is enabled in heating mode (debugging mode, auto-selected by system).
	db	Light	16	light	Error code	light	Error occurs during debugging in heating mode.
	db	Light	16	light	J0	light	Error of other modules occurs during debugging in heating mode.
16_Heating debugging	db	Light	16	light	U9	light	Outdoor pipeline and valves are not normal.
	db	Light	16	light	XXXX/U8	light	System detects error in indoor pipeline. XXXX is the project no. of the faulted IDU. 3s later, error code U8 is displayed. For example, IDU no. 100 has U8 error, then LED3 displays like this: 01 (2s later) 00 (2s later) U8, and repeat again.

Step 18: if there's no error during operation for about 40min, system will automatically confirm that debugging is finished and then stop. System resumes standby condition and displays as below:

-	Debugg	ging code	Progr	Progress code		us code	
	LE	ED1	L	ED2	ED2 LED3		Meaning
progress	Code	Display status	Code	Display status	Code	Display status	Wicariing
17_Debugging finished	01-04	light	OF	light	OF	light	Debugging is finished. System is on standby condition. LED1 displays module address. LED2 and LED3 display "OF".

Step 19: after debugging is finished, some functions can be set up according to project's actual needs. For specific details, please refer to System Functions Setup. If no special requirements, skip this step.

Step 20: deliver the product to user and inform user about usage precautions.

5.2.3 Appendix: judgment reference of normal operational parameters

	Reference of Debug Parameters of photovoltaic multi VRF System										
No.	Debug it	em	Parameter name	Unit	Reference						
1			Outdoor ambient temp	°C(°F)	-						
2			Discharge tube temp of inverter compressor 1	°C(°F)	 When system compressor starts up, temp of discharge tube or casing top in cooling mode is within 70~95℃ (158~203°F), and at least 10 						
3	System parameters	ODU	Casing top temp of inverter compressor 1	°C(°F)	$^{\circ}$ (50°F) higher than system high pressure saturation temp; Temp in heating mode is within 65~80 $^{\circ}$ C						
4			Discharge tube temp of inverter compressor 2	°C(°F)	(149~176°F), and at least 10°C(50°F) higher than system high pressure saturation temp. ■ When inverter compressor starts but inverter						

	Reference of Debug Parameters of photovoltaic multi VRF System					
No.	Debug it		Parameter name	Unit	Reference	
5		-	Casing top temp of inverter compressor 2	°C(°F)	compressor 2 stops, the discharge tube temperature of inverter compressor 2 is almost the same with ambient temp.	
6			Defrost temp 1	°C(°F)	 In cooling mode, defrost temp1 is 5~11 °C (41~51.8°F) lower than system high pressure value; In heating mode, defrost temp1 is about 2 °C (35.6°F) different from system low pressure value. 	
7			System high pressure	°C(°F)	 System's normal high pressure value is within 20~25°C (68~77°F) According to the change in ambient temp and system operational capacity, system's high pressure value is 10~40°C (50~104°F) higher than ambient temp The higher ambient temp is, the smaller temp difference is. When ambient temp is 25~35°C (77~95°F), system's high pressure value in cooling mode is 44~53°C (111.2~127.4°F). When ambient temp is -5~10°C (23~50°F), system's high pressure value in heating mode is 40~52°C (104~125.6°F). 	
8			System low pressure	°C(°F)	 When ambient temp is 25~35℃(77~95°F), system's low pressure value in cooling mode is 0~8℃(32~46.4°F). When ambient temp is -5~10℃(23~50°F), system's low pressure value in heating mode is -15~5℃ (5~41°F). 	
9	System	ODU	Opening angle of heating EXV	PLS	 In cooling mode, heating electronic expansion valve remains 480PLS. In heating mode, the opening angle of adjustable electronic expansion valve varies within 120~480PLS. 	
10	parameters		Operating freq. of inverter compressor 1	Hz	Varies from 20Hz to 95Hz	
11			Current of inverter compressor 1	Α	According to different operating freq. and different load, current will vary from 7A to 40A.	
12			IPM temp of inverter compressor 1	°C(°F)	When ambient temp is lower than 35°C (95°F), IPM temp is below 85°C (185°F). Highest temp won't be above 95°C (203°F).	
13			Inverter compressor 1 driven bus voltage	٧	Normal bus voltage is 1.414 times of power voltage. For example, if 3-phase power voltage is 220V, then the bus voltage after rectification is: 220V X 1.414=311V. It's normal if actual voltage varies 15v from the calculated voltage.	
14			Operating freq. of inverter compressor 2	Hz	Varies from 30Hz to 100Hz	
15			Current of inverter compressor 2	Α	According to different operating freq. and different load, current will vary from 7A to 25A.	
16			IPM temp of inverter compressor 2	°C(°F)	When ambient temp is lower than 35°C (95°F), IPM temp is below 80°C (176°F). Highest temp won't be above 95°C (203°F).	
17			Inverter compressor 2 driven bus voltage	V	Normal bus voltage is 1.414 times of power voltage. For example, if 3-phase power voltage is 220V, then the bus voltage after rectification is: 220V X 1.414=311V. It's normal if actual voltage varies 15v from the calculated voltage.	

	Reference of Debug Parameters of photovoltaic multi VRF System					
No.	Debug it	em	Parameter name	Unit	Reference	
18			Operating freq of fan motor 1	Hz	Adjusts in 0~65Hz according to system pressure.	
19		ODU	Current of fan motor 1	Α	-	
20			Operating freq of fan motor 2	Hz	Adjusts in 0~65Hz according to system pressure.	
21			Current of fan motor 2	Α	-	
22			Ambient temp of IDU	°C(°F)	-	
23	System parameters		Inlet tube temp of indoor heat exchanger	°C(°F)	According to different ambient temp, for a same IDU under cooling mode, inlet tube temp will be	
24		IDU	Outlet tube temp of indoor heat exchanger	°C(°F)	1~7°C(33.8~44.6°F) lower than outlet tube temp. • For a same IDU under heating mode, inlet tube temp will be 10~20°C(50~68°F) lower than outlet tube temp.	
25			Opening angle of indoor EXV	PLS	Adjusts opening angle automatically in 200~2000PLS or 70~480PLS.	
26	Communi -cation parameter		Communication data	-	Quantity of IDU and ODU detected by software is the same with actual quantity. No communication error.	
27	7 Drainage system		-	-	IDU can drain water out completely and smoothly. Condensate pipe has no backward slope of water. Water of ODU can be drained completely through drainage pipe. No water drop from unit base.	
28	28 Others		-	°C(°F)	Compressor and indoor/outdoor fan motor has no strange noise. Unit operates normally.	

6 Common Malfunction and Troubleshooting

Check the following items before contacting for repair.

Phenomenon	Reason	Measure
	Without power supply	Connect to power supply
The unit doesn't	Voltage is too low	Check if the voltage is within rating range
	Broken fuse or breaker trips off	Replace fuse or connect breaker
run.	Insufficient energy of remote controller	Replace new battery
	Remote controller is out of control scope	Control scope is within 8m
Unit runs but stop immediately	Air intake or outlet of indoor or outdoor unit is blocked	Remove obstruction
	Air intake or outlet of indoor or outdoor unit is blocked	Remove obstruction
	Improper temperature setting	Adjust setting at wireless remote controller or wired controller
Alexander	Fan speed is set too low	Adjust setting at wireless remote controller or wired controller
Abnormal cooling or heating	Wind direction is not correct	Adjust setting at wireless remote controller or wired controller
	Door or windows are opened	Close the door or windows
	Direct sunshine	Draw curtain or louver
	Too many people in the room	-
	Too many heat resources in the room	Reduce heat resources
	Filter is blocked for dirt	Clean the filter

NOTICE

- (1) When installing remote monitor or central controller, displacement on indoor units' project codes must be made. Otherwise, there will be collision malfunction of the project codes. For detail operation methods, please refer to the Photovoltaic Multi VRF Installation and Maintenance Manual.
- (2) If problem cannot be solved after checking the above items, please contact Gree service center and show phenomena and models.

Following circumstance are not malfunction.

	"Malfunction"	Reason
Unit doesn't run	When unit is started immediately after it is just turned off	Overload protection switch makes it run after 3 minutes delay
-	When power is turned on	Standby operating for about 1 minute
Mist comes from the unit	Under cooling	Indoor high humidity air is cooled rapidly
Noise is emitted	Slight cracking sound is heard when just turned on	It is noise when electronic expansion valve initialization
	There is consecutive sound when cooling	That's sound for gas refrigerant flowing in unit
	There is sound when unit starts or stops	That's sound for gas refrigerant stops to flow
-	There is slight and consecutive sound when unit is running or after running	That's sound for operation of drainage system
	Cracking sound is heard when unit is operating and after operating	That's sound caused by expansion of panel and other parts due to temperature change
The unit blows out duct	When unit runs after no operation for a long period	Dust in indoor unit is blew out
The unit emits odor	Operating	The room odor absorbed by the unit is blew out again
Indoor unit still runs after switch off	After every indoor unit receive "stop" signal, fan will keep running	Indoor fan motor will keep running 20-70s so as to take good use of excess cooling and heating and prepare for next operation
Mode conflict	COOL or HEAT mode cannot be operated	When the indoor operating mode conflicts with that of outdoor unit, indoor fault indicator will flash and conflict will be shown on the wired controller after 5 minutes. Indoor unit stops to run and meanwhile change outdoor operating mode as the same as that of indoor unit, then the unit will go back to normal. COOL mode doesn't conflict with DRY mode. FAN mode doesn't conflict with any mode.

7 Error Indication

Inquiry method of malfunction display: combine division number and content number to check the corresponding malfunction.

Indoor:

Error Code	Content	Error Code	Content
L0	Malfunction of IDU	d2	Malfunction of lower water
			temperature sensor of water tank
L1	Protection of indoor fan	d3	Malfunction of ambient temperature
			sensor

L2 Auxiliary heating protection d4 Malfunction of entry-tube temperature sensor L3 Water-full protection d6 Malfunction of exit-tube temperature sensor L4 Abnormal power supply for wired controller L5 Freeze prevention protection d8 Malfunction of humidity sensor L7 No main IDU d9 Malfunction of jumper cap L8 Power supply is insufficient dA Web address of IDU is abnormal L9 For single control over multiple units, number of IDU is inconsistent LA For single control over multiple units, IDU series is inconsistent LH Alarm due to bad air quality dL Malfunction of air outlet temperature sensor LC IDU is not matching with outdoor unit dE Malfunction of indoor CO2 sensor LL Malfunction of water flow switch dF Malfunction of backwater temperature pump is abnormal LF Malfunction of shunt valve setting dP Malfunction of inlet tube temperature sensor of generator LJ Setting of functional DIP switch code is wrong dWalfunction of inlet tube temperature sensor of generator LD Zero-crossing malfunction of PG motor LD Indoor unit's branch is not inconsistent for one-to-more unit of heat recovery system d1 Indoor PCB is poor dn Malfunction of swing parts	Error Code	Content	Error Code	Content
L3 Water-full protection d6 sensor L4 Abnormal power supply for wired controller d7 Malfunction of humidity sensor L5 Freeze prevention protection d8 Malfunction of water temperature sensor L7 No main IDU d9 Malfunction of jumper cap L8 Power supply is insufficient dA Web address of IDU is abnormal L9 For single control over multiple units, number of IDU is inconsistent dC Setting capacity of DIP switch code is abnormal LA For single control over multiple units, IDU series is inconsistent dC Setting capacity of DIP switch code is abnormal LA IDU series is inconsistent dL Malfunction of air outlet temperature sensor LC IDU is not matching with outdoor unit dE Malfunction of indoor CO ₂ sensor LL Malfunction of water flow switch dF Malfunction of upper water temperature sensor of water tank LE Rotation speed of EC DC water pump is abnormal LF Malfunction of shunt valve setting dP Malfunction of inlet tube temperature sensor of generator LJ Setting of functional DIP switch code is wrong LD Zero-crossing malfunction of PG motor LD Indoor unit's branch is not inconsistent for one-to-more unit of heat recovery system	L2	Auxiliary heating protection	d4	· ·
L5 Freeze prevention protection L7 No main IDU L8 Power supply is insufficient L9 For single control over multiple units, number of IDU is inconsistent LA For single control over multiple units, IDU series is inconsistent LH Alarm due to bad air quality LC IDU is not matching with outdoor unit LE Rotation speed of EC DC water pump is abnormal LF Malfunction of shunt valve setting LJ Setting of functional DIP switch code is wrong LD Setting of functional DIP switch code is wrong LD Setting of function of PG motor Malfunction of numity sensor Malfunction of indoor CO2 sensor Malfunction of indoor CO2 sensor Malfunction of indet tube temperature sensor of generator Malfunction of of air nutlet temperature sensor of water tank Malfunction of indoor CO2 sensor Malfunction of indoor CO2 sensor Malfunction of intelt tube temperature sensor of generator Malfunction of of air nutlet tube temperature sensor of generator Malfunction of of penerator Malfunction of intelt tube temperature sensor of generator Malfunction of of air nutlet tube temperature sensor of generator Malfunction of solar power temperature sensor of solar power temperature sensor	L3	Water-full protection	d6	·
L5 Freeze prevention protection L7 No main IDU d9 Malfunction of jumper cap L8 Power supply is insufficient dA Web address of IDU is abnormal L9 For single control over multiple units, number of IDU is inconsistent LA For single control over multiple units, number of IDU is inconsistent LA For single control over multiple units, IDU series is inconsistent LH Alarm due to bad air quality dL Malfunction of air outlet temperature sensor LC IDU is not matching with outdoor unit dE Malfunction of indoor CO2 sensor LL Malfunction of water flow switch dF Malfunction of upper water temperature sensor of water tank LE Rotation speed of EC DC water pump is abnormal LF Malfunction of shunt valve setting dP Malfunction of inlet tube temperature sensor of generator LF Setting of functional DIP switch code is wrong db Malfunction of drainage pipe temperature sensor of generator LP Zero-crossing malfunction of PG motor dd Malfunction of solar power temperature sensor Malfunction of solar power temperature sensor	L4		d7	Malfunction of humidity sensor
L8 Power supply is insufficient L9 For single control over multiple units, number of IDU is inconsistent LA For single control over multiple units, number of IDU is inconsistent LA For single control over multiple units, IDU series is inconsistent LH Alarm due to bad air quality LC IDU is not matching with outdoor unit LL Malfunction of water flow switch LE Rotation speed of EC DC water pump is abnormal LF Malfunction of shunt valve setting LJ Setting capacity of DIP switch code is abnormal Malfunction of air outlet temperature sensor Malfunction of indoor CO ₂ sensor Malfunction of upper water temperature sensor of water tank Malfunction of backwater temperature sensor Malfunction of backwater temperature sensor Malfunction of inlet tube temperature sensor of generator Malfunction of drainage pipe temperature sensor of generator LP Zero-crossing malfunction of PG motor Indoor unit's branch is not inconsistent for one-to-more unit of heat recovery system Malfunction of solar power temperature sensor	L5	Freeze prevention protection	d8	·
L9 For single control over multiple units, number of IDU is inconsistent LA For single control over multiple units, IDU series is inconsistent LH Alarm due to bad air quality LC IDU is not matching with outdoor unit LL Malfunction of water flow switch LE Rotation speed of EC DC water pump is abnormal LF Malfunction of shunt valve setting LJ Setting capacity of DIP switch code is abnormal Malfunction of air outlet temperature sensor Malfunction of indoor CO ₂ sensor Malfunction of indoor CO ₂ sensor Malfunction of upper water temperature sensor of water tank Malfunction of backwater temperature sensor Malfunction of inlet tube temperature sensor of generator Malfunction of drainage pipe temperature sensor of generator LP Zero-crossing malfunction of PG motor Indoor unit's branch is not inconsistent for one-to-more unit of heat recovery system Malfunction of solar power temperature sensor	L7	No main IDU	d9	Malfunction of jumper cap
LA For single control over multiple units, IDU series is inconsistent LH Alarm due to bad air quality LC IDU is not matching with outdoor unit LE Rotation speed of EC DC water pump is abnormal LF Malfunction of shunt valve setting LJ Setting of functional DIP switch code is abnormal Malfunction of indoor CO ₂ sensor Malfunction of upper water temperature sensor of water tank Malfunction of backwater temperature sensor Malfunction of inlet tube temperature sensor of generator Malfunction of drainage pipe temperature sensor of generator LP Zero-crossing malfunction of PG motor LU Malfunction of solar power temperature sensor Malfunction of solar power temperature sensor	L8	Power supply is insufficient	dA	Web address of IDU is abnormal
LA IDU series is inconsistent LH Alarm due to bad air quality LC IDU is not matching with outdoor unit LL Malfunction of water flow switch LE Rotation speed of EC DC water pump is abnormal LF Malfunction of shunt valve setting LJ Setting of functional DIP switch code is wrong LP Zero-crossing malfunction of PG motor LU Malfunction of solar power temperature IDU series is inconsistent Alarm due to bad air quality dL Malfunction of air outlet temperature sensor Malfunction of indoor CO ₂ sensor Malfunction of upper water temperature sensor of water tank Malfunction of backwater temperature sensor Malfunction of inlet tube temperature sensor of generator Malfunction of drainage pipe temperature sensor of generator Malfunction of drainage pipe temperature sensor of generator Malfunction of solar power temperature sensor	L9		dH	PCB of wired controller is abnormal
LC IDU is not matching with outdoor unit dE Malfunction of indoor CO2 sensor LL Malfunction of water flow switch dF Malfunction of upper water temperature sensor of water tank LE Rotation speed of EC DC water pump is abnormal dP Malfunction of backwater temperature sensor LF Malfunction of shunt valve setting dP Malfunction of inlet tube temperature sensor of generator LJ Setting of functional DIP switch code is wrong dDP witch code les wrong dDP temperature sensor of generator LP Zero-crossing malfunction of PG motor db Debugging status LU Indoor unit's branch is not inconsistent for one-to-more unit of heat recovery system dd Malfunction of solar power temperature sensor	LA	-	dC	1
LL Malfunction of water flow switch LE Rotation speed of EC DC water pump is abnormal LF Malfunction of shunt valve setting LJ Setting of functional DIP switch code is wrong LP Zero-crossing malfunction of PG motor LU Indoor unit's branch is not inconsistent for one-to-more unit of heat recovery system Malfunction of upper water temperature sensor of water tank Malfunction of backwater temperature sensor Malfunction of inlet tube temperature sensor of generator Malfunction of drainage pipe temperature sensor of generator Malfunction of solar power temperature sensor	LH	Alarm due to bad air quality	dL	-
LE Rotation speed of EC DC water pump is abnormal LF Malfunction of shunt valve setting LJ Setting of functional DIP switch code is wrong LP Zero-crossing malfunction of PG motor LU Indoor unit's branch is not inconsistent for one-to-more unit of heat recovery system Malfunction of water tank temperature sensor of water tank Malfunction of backwater temperature sensor Malfunction of backwater temperature sensor of inlet tube temperature sensor of generator Malfunction of drainage pipe temperature sensor of generator Debugging status Malfunction of solar power temperature sensor	LC	IDU is not matching with outdoor unit	dE	Malfunction of indoor CO ₂ sensor
LF pump is abnormal dJ sensor LF Malfunction of shunt valve setting dP Malfunction of inlet tube temperature sensor of generator LJ Setting of functional DIP switch code is wrong dU Malfunction of drainage pipe temperature sensor of generator LP Zero-crossing malfunction of PG motor db Debugging status LU Indoor unit's branch is not inconsistent for one-to-more unit of heat recovery system dd Malfunction of solar power temperature sensor	LL	Malfunction of water flow switch	dF	
LJ Setting of functional DIP switch code is wrong LP Zero-crossing malfunction of PG motor LU Indoor unit's branch is not inconsistent for one-to-more unit of heat recovery system Malfunction of generator Malfunction of drainage pipe temperature sensor of generator Debugging status Malfunction of solar power temperature sensor	LE	·	dJ	·
LD is wrong dU temperature sensor of generator LP Zero-crossing malfunction of PG motor Indoor unit's branch is not inconsistent for one-to-more unit of heat recovery system db Debugging status Malfunction of solar power temperature sensor	LF	Malfunction of shunt valve setting	dP	I
LP Zero-crossing malfunction of PG motor Indoor unit's branch is not inconsistent for one-to-more unit of heat recovery system db Debugging status Malfunction of solar power temperature sensor	LJ		dU	ı
LU inconsistent for one-to-more unit of heat recovery system Malfunction of solar power temperature sensor	LP		db	
d1 Indoor PCB is poor dn Malfunction of swing parts	LU	inconsistent for one-to-more unit of	dd	· · · · · · · · · · · · · · · · · · ·
	d1	Indoor PCB is poor	dn	Malfunction of swing parts

Outdoor:

Error Code	Content	Error Code	Content
E0	Malfunction of ODU	FC	Current sensor of compressor 2 is abnormal
E1	High-pressure protection	FL	Current sensor of compressor 3 is abnormal
E2	Discharge low-temperature protection	FE	Current sensor of compressor 4 is abnormal
E3	Low-pressure protection	FF	Current sensor of compressor 5 is abnormal
E4	High discharge temperature protection of compressor	FJ	Current sensor of compressor 6 is abnormal
J0	Protection for other modules	FP	Malfunction of DC motor
J1	Over-current protection of compressor 1	FU	Malfunction of casing top temperature sensor of compressor 1
J2	Over-current protection of compressor 2	Fb	Malfunction of casing top temperature sensor of compressor 2
J3	Over-current protection of compressor 3	Fd	Malfunction of exit tube temperature sensor of mode exchanger
J4	Over-current protection of compressor 4	Fn	Malfunction of inlet tube temperature sensor of mode exchanger

T HOLOVOILAIO E	hiect-differ fifterer vivi		
Error Code	Content	Error Code	Content
J5	Over-current protection of compressor 5	b1	Malfunction of outdoor ambient temperature sensor
J6	Over-current protection for compressor 6	b2	Malfunction of defrosting temperature sensor 1
J7	Gas-mixing protection of 4-way valve	b3	Malfunction of defrosting temperature sensor 2
J8	High pressure ratio protection of system	b4	Malfunction of liquid temperature sensor of sub-cooler
J9	Low pressure ratio protection of system	b5	Malfunction of gas temperature sensor of sub-cooler
JA	Protection because of abnormal pressure	b6	Malfunction of inlet tube temperature sensor of vapor liquid separator
JC	Water flow switch protection	b7	Malfunction of exit tube temperature sensor of vapor liquid separator
JL	Protection because high pressure is too low	b8	Malfunction of outdoor humidity sensor
JE	Oil-return pipe is blocked	b9	Malfunction of gas temperature sensor of heat exchanger
JF	Oil-return pipe is leaking	bA	Malfunction of oil-return temperature sensor 1
P0	malfunction of driving board of compressor	bH	Clock of system is abnormal
P1	Driving board of compressor operates abnormally	bE	Malfunction of inlet tube temperature sensor of condenser
P2	Voltage protection of driving board power of compressor	bF	Malfunction of outlet tube temperature sensor of condenser
P3	Reset protection of driving module of compressor	bJ	High-pressure sensor and low-pressure sensor are connected reversely
P4	Drive PFC protection of compressor	bP	Malfunction of temperature sensor of oil-return 2
P5	Over-current protection of inverter compressor	bU	Malfunction of temperature sensor of oil return 3
P6	Drive IPM module protection of compressor	bb	Malfunction of temperature sensor of oil return 4
P7	Malfunction of drive temperature sensor of compressor	H0	Malfunction of driving board of fan
P8	Drive IPM high temperature protection of compressor	H1	Driving board of fan operates abnormally
P9	Desynchronizing protection of inverter compressor	H2	Voltage protection of driving board power of fan
PA	Malfunction of drive storage chip of compressor	H3	Reset protection of driving module of fan
PH	High-voltage protection of compressor's drive DC bus bar	H4	Drive PFC protection of fan
PC	Malfunction of current detection circuit drive of compressor	H5	Over-current protection of inverter fan
PL	Low voltage protection for DC bus bar of drive of compressor	H6	Drive IPM module protection of fan
PE	Phase-lacking of inverter compressor	H7	Malfunction of drive temperature sensor of fan
PF	Malfunction of charging loop of driven of compressor	Н8	Drive IPM high temperature protection of fan
PJ	Failure startup of inverter compressor	Н9	Desynchronizing protection of inverter fan

PP AC current protection of inverter compressor PU AC input voltage of drive of inverter compressor FO Main board of ODU is poor F1 Malfunction of high-pressure sensor F3 Malfunction of low-pressure sensor F5 Malfunction of discharge temperature sensor F6 Malfunction of exit-tube temperature sensor F7 Malfunction of humidity sensor F8 Malfunction of water temperature sensor F9 Malfunction of jumper cap FA Web address of IDU is abnormal FH Current sensor of compressor 1 is abnormal F6 Current sensor of compressor 1 is abnormal F8 Current sensor of compressor 1 is abnormal F9 V reversed connection protection F9 V reversed connection protection F0 PV reversed connection protection F8 PU HH High-voltage protection of fan's drive HC Malfunction of current detection of current detection circuit of fan drive HC Malfunction of current detection circuit of fan drive Low voltage protection of bus bar of fan drive Low voltage protection of bus bar of fan drive Low voltage protection of hus bar of fan drive HD Malfunction of current detection circuit of fan's drive HF Malfunction of current detection circuit of fan's drive HF Malfunction of current fan HF AC current protection of inverter fan HO AC input voltage of drive of inverter fan HD AC current protection of inverter fan HD AC input voltage of drive of inverter fan HD AC input voltage of drive of inverter fan HD AC input voltage of drive of inverter fan HD AC input voltage of drive of inverter fan HD AC input voltage of drive of inverter fan HD AC input voltage of drive of inverter fan HD AC input voltage of drive of inverter fan HD AC input voltage of drive of inverter fan HD AC input voltage of drive of inverter fan	Error Code	Content	Error Code	Content
PU AC input voltage of drive of inverter compressor PU AC input voltage of drive of inverter compressor FO Main board of ODU is poor F1 Malfunction of high-pressure sensor F3 Malfunction of low-pressure sensor F5 Malfunction of low-pressure sensor F6 Malfunction of discharge temperature sensor of compressor 1 F6 Malfunction of exit-tube temperature sensor of compressor 1 F7 Malfunction of himidity sensor F8 Malfunction of himidity sensor F9 Malfunction of himidity sensor F9 Malfunction of himidity sensor F9 Malfunction of privater temperature sensor protection F1 Private sensor pr	Elloi Code		Elloi Code	Content
FU compressor FI Main board of ODU is poor FI Malfunction of high-pressure sensor FI Malfunction of high-pressure sensor FI Malfunction of low-pressure sensor FI Malfunction of low-pressure sensor FI Malfunction of discharge temperature sensor of compressor 1 FI Malfunction of exit-tube temperature sensor FI Malfunction of exit-tube temperature sensor FI Malfunction of water temperature sensor FI Malfunction of water temperature sensor FI Malfunction of water temperature sensor FI Malfunction of jumper cap FI Malfunction of water temperature sensor FI Malfunction of water temperature sensor FI Malfunction of of exit-tube temperature sensor FI Malfunction of cavit-tube temperature sensor FI AC current protection of inverter fan FI AC input voltage of drive of inverter fan FI AC current protection of HP AC current protection of inverter fan FI AC input voltage of drive of inverter fan FI AC input voltage of drive of inverter fan FI AC input voltage of drive of inverter fan FI AC input voltage of drive of inverter fan FI AC input voltage of drive of inverter fan FI AC input voltage of drive of inverter fan FI AC input voltage of drive of inverter fan FI AC input voltage of drive of inverter fan FI AC input voltage of drive of inverter fan FI AC input voltage of drive of inverter fan FI AC input voltage of drive of inverter fan FI AC input voltage of drive of inverter fan FI AC input voltage of drive of inverter fan FI AC input voltage of drive of inverter fan FI AC input voltage of drive of inverter fan FI AC input voltage of drive of inverter fan FI AC input voltage of drive of inverter fan FI AC current protection GH Phot	PP	-	HA	
FU Maifunction of high-pressure sensor HL Low voltage protection of bus bar of fan drive F3 Maifunction of low-pressure sensor HE Phase-lacking of inverter fan Maifunction of discharge temperature sensor of compressor 1 F6 Maifunction of exit-tube temperature sensor HP AC current protection of inverter fan Maifunction of humidity sensor HP AC current protection of inverter fan AC input voltage of drive	PU	-	НН	
F1 Malfunction of nigh-pressure sensor F1 F2 Malfunction of low-pressure sensor F5 Malfunction of discharge temperature sensor of compressor 1 F6 Malfunction of exit-tube temperature sensor F6 Malfunction of humidity sensor F7 Malfunction of humidity sensor F7 Malfunction of humidity sensor F8 Malfunction of humidity sensor F9 Malfunction of jumper cap F9 Malfun	F0	Main board of ODU is poor	НС	Malfunction of current detection circuit of fan drive
Malfunction of discharge temperature sensor of compressor 1	F1	Malfunction of high-pressure sensor	HL	
F5 sensor of compressor 1 F6 Malfunction of exit-tube temperature sensor F7 Malfunction of humidity sensor F8 Malfunction of water temperature sensor F9 Malfunction of jumper cap FA Web address of IDU is abnormal FA Web address of IDU is abnormal FH AC current protection of inverter fan FA Web address of IDU is abnormal FB AC current protection of inverter fan FA Web address of IDU is abnormal FB AC current protection of inverter fan FB AC current protection FD Photovoltaic DC\DC protection FP FD Confide in protection FP FD Confide in protection FF AC Protection FF AC Current protection at power FF AC FF AC FF	F3	Malfunction of low-pressure sensor	HE	Phase-lacking of inverter fan
F7 Malfunction of humidity sensor F8 Malfunction of water temperature sensor F9 Malfunction of jumper cap FA Web address of IDU is abnormal FH Current sensor of compressor 1 is abnormal FH AC current protection of inverter fan AC input voltage of drive of inverter fan AC	F5	_	HF	
F8 Malfunction of water temperature sensor F9 Malfunction of jumper cap FA Web address of IDU is abnormal FH Current sensor of compressor 1 is abnormal G0 PV reversed connection protection G1 PV Anti-islanding protection G2 PV DC overcurrent protection G3 PV power generation overload G4 PV leakage current protection G5 Phase-lacking protection at power grid side G6 Phase-lacking protection at power grid side G7 PV LVRT G8 Drive IPM module protection at power grid side G9 Drive IPM module protection at power grid side GA Low/high input voltage protection at power grid side GA Grid side relay protection GA Crid side temperature protection GB Crid side temperature sensor grid side GC Charging circuit protection GC Photovoltaic DC DC Dc protection GC Photovoltaic DC DC protection GC Photovoltaic DC DC protection GC Photovoltaic DC DC Dc protection GC Photovoltaic DC DC protection GC Photovoltaic DC DC protection GC Photovoltaic DC hardware overcurrent protection GC Protovoltaic DC hardware overcurrent protection GC Protovoltaic DC hardware overcurrent protection GC Protovoltaic DC hardware overcurren	F6	-	HJ	Failure startup of inverter fan
F8 sensor F9 Malfunction of jumper cap FA Web address of IDU is abnormal FA Web address of IDU is abnormal FH Current sensor of compressor 1 is abnormal G0 PV reversed connection protection G1 PV Anti-islanding protection G2 PV DC overcurrent protection G3 PV power generation overload G4 PV leakage current protection G5 Phase-lacking protection at power grid side G6 Phase-lacking protection at power grid side G7 PV LVRT G8 Overcurrent protection at power grid side G9 Drive IPM module protection at power grid side GA Low/high input voltage protection at power grid side GA Low/high input voltage protection at power grid side GA Grid side relay protection GB Grid side temperature sensor protection GC Protection GD Phase-lacking protection at power grid side GP Grid side module high-temperature protection GP GP Grid side temperature sensor protection GP GP Grid side relay protection GP GP Grid side temperature sensor protection GP GP Grid side relay protection GP GP Grid side temperature sensor protection GP GP Grid side relay protection GP GP Grid side relay protection GP Grid side relay protection	F7	Malfunction of humidity sensor	HP	AC current protection of inverter fan
FA Web address of IDU is abnormal FH Current sensor of compressor 1 is abnormal GO PV reversed connection protection G1 PV Anti-islanding protection G2 PV DC overcurrent protection G3 PV power generation overload G4 PV leakage current protection G5 Phase-lacking protection at power grid side G7 PV LVRT G8 Overcurrent protection at power grid side G9 Drive IPM module protection at power grid side GA Low/high input voltage protection GC Photovoltaic DC\DC protection GH Photovoltaic DC\DC protection GH Photovoltaic DC\DC protection GH Photovoltaic DC\DC protection GH Photovoltaic DC\DC protection GC Photovoltaic DC\DC protection GC Photovoltaic DC\DC protection GC Grid side hardware overcurrent protection GF Grid side hardware overcurrent protection GF GF Grid side relay protection GF GF Grid side relay protection GF GF GF DC bus neutral-point potential unbalance protection GF GF GF Grid side module high-temperature protection GF G	F8		HU	_
FH Current sensor of compressor 1 is abnormal G0 PV reversed connection protection G1 PV Anti-islanding protection G2 PV DC overcurrent protection G3 PV power generation overload G4 PV leakage current protection G5 Phase-lacking protection at power grid side G7 PV LVRT G8 Overcurrent protection at power grid side G9 Drive IPM module protection at power grid side G0 Drive IPM module protection at power grid side EV power generation at power grid side GA Low/high input voltage protection at power grid side EV LVRT Countries Power grid side EV Charging circuit protection EV LVRT Countries Power grid side EV Charging circuit protection EV LVRT Countries Power grid side EV Charging circuit protection EV Low/high input voltage protection at power grid side EV Charging circuit protection	F9	Malfunction of jumper cap	HJ	Failure startup of inverter fan
FH abnormal HU fan G0 PV reversed connection protection G1 PV Anti-islanding protection G2 PV DC overcurrent protection G3 PV power generation overload G4 PV leakage current protection G5 Phase-lacking protection at power grid side G7 PV LVRT G8 Overcurrent protection at power grid side G9 Drive IPM module protection at power grid side GA Low/high input voltage protection GA PV reversed connection protection GB Photovoltaic DC hardware overcurrent protection GC Photovoltaic DC hardware overcurrent protection GB Grid side hardware overcurrent protection GE High or low photovoltaic voltage protection GB Grid side relay protection GB Grid side relay protection GB Insulation resistance protection GF DC bus neutral-point potential unbalance protection GRID Grid side module high-temperature protection GP Grid side temperature sensor protection GP Grid side temperature sensor protection GP Grid side temperature sensor protection GRID Charging circuit protection GRID Charging circuit protection GRID Charging circuit protection	FA	Web address of IDU is abnormal	HP	AC current protection of inverter fan
PV Anti-islanding protection GC Photovoltaic DC hardware overcurrent protection GL Grid side hardware overcurrent protection GL Grid side hardware overcurrent protection GE High or low photovoltaic voltage protection GE PV power generation overload GE High or low photovoltaic voltage protection GE PV leakage current protection Gb Grid side relay protection GF Phase-lacking protection at power grid side GF Insulation resistance protection GF DC bus neutral-point potential unbalance protection GF GF Grid side module high-temperature protection GF Grid side module high-temperature protection GF Grid side temperature sensor protection GF Grid side temperature sensor protection GF GF Grid side temperature sensor protection GF GF Grid side temperature sensor protection GF GF GF GF GF GF GF G	FH		HU	
PV Anti-Islanding protection GC protection	G0	PV reversed connection protection	GH	Photovoltaic DC\DC protection
G2 PV DC overcurrent protection GL protection G3 PV power generation overload GE High or low photovoltaic voltage protection G4 PV leakage current protection G5 Phase-lacking protection at power grid side G6 Phase-lacking protection at power grid side G7 PV LVRT G9 Overcurrent protection at power grid side G9 Drive IPM module protection at power grid side GA Low/high input voltage protection at power grid side GB PV LVRT GB PV LVRT GC PV Charging circuit protection GR Charging circuit protection	G1	PV Anti-islanding protection	GC	Photovoltaic DC hardware overcurrent protection
G3 PV power generation overload GE protection G4 PV leakage current protection Gb Grid side relay protection G5 Phase-lacking protection at power grid side G6 Phase-lacking protection at power grid side G7 PV LVRT GJ Grid side module high-temperature protection G8 Overcurrent protection at power grid side G9 Drive IPM module protection at power grid side GA Low/high input voltage protection at power grid side GB Grid side relay protection GB Grid side relay protection GB Grid side temperature sensor protection GB Grid side relay protection GB Grid side relay protection	G2	PV DC overcurrent protection	GL	
Phase-lacking protection at power grid side Gn Insulation resistance protection	G3	PV power generation overload	GE	
G5 grid side G6 Phase-lacking protection at power grid side G7 PV LVRT G8 Overcurrent protection at power grid side G9 Drive IPM module protection at power grid side GA Low/high input voltage protection at power grid side G8 Grid side relay protection G9 Grid side relay protection G9 Grid side relay protection G9 Grid side relay protection	G4	PV leakage current protection	Gb	Grid side relay protection
GF unbalance protection G7 PV LVRT GJ Grid side module high-temperature protection G8 Overcurrent protection at power grid side G9 Drive IPM module protection at power grid side GA Low/high input voltage protection at power grid side GF Unbalance protection Grid side module high-temperature protection GP Grid side temperature sensor protection GU Charging circuit protection GB Grid side relay protection	G5	- ·	Gn	Insulation resistance protection
G7 G8 Overcurrent protection at power grid side G9 Drive IPM module protection at power grid side GA Low/high input voltage protection at power grid side GB GB GB GC GR Grid side temperature sensor protection GU Charging circuit protection GB Grid side relay protection	G6	- ·	GF	
GB side protection G9 Drive IPM module protection at power grid side GA Low/high input voltage protection at power grid side GB GF protection GU Charging circuit protection GB Grid side relay protection	G7	PV LVRT	GJ	
G9 grid side GA Low/high input voltage protection at power grid side GB GO Charging circuit protection GB Grid side relay protection	G8		GP	
GA Grid side relay protection power grid side	G9	grid side	GU	Charging circuit protection
Gy Power protection(PV) Gd Grid side current sensor protection	GA		Gb	Grid side relay protection
	Gy	Power protection(PV)	Gd	Grid side current sensor protection

Debugging:

Error Code	Content	Error Code	Content
U0	Preheat time of compressor is insufficient	C5	Alarm because project code of IDU is inconsistent
U2	Wrong setting of ODU's capacity code/jumper cap	C6	Alarm because ODU quantity is inconsistent
U3	Power supply phase sequence protection	C7	Abnormal communication of converter
U4	Refrigerant-lacking protection	C8	Emergency status of compressor
U5	Wrong address for driving board of compressor	C9	Emergency status of fan
U6	Alarm because valve is abnormal	CA	Emergency status of module
U8	Malfunction of pipeline for IDU	CH	Rated capacity is too high
U9	Malfunction of pipeline for ODU	CC	No main unit

65

Error Code	Content	Error Code	Content
UC	Setting of main IDU is succeeded	CL	The matching ratio of rated capacity for IDU and ODU is too low
UL	Emergency operation DIP switch code of compressor is wrong	CE	Communication malfunction between mode exchanger and IDU
UE	Charging of refrigerant is invalid	CF	Malfunction of multiple main control units
UF	Identification malfunction of IDU of mode exchanger	Cl	Address DIP switch code of system is shocking
Ud	Drive board of grid-connection is abnormal	СР	Malfunction of multiple wired controller
Un	Communication malfunction between the drive board of grid-connection and the main board	CU	Communication malfunction between IDU and the receiving lamp
C0	Communication malfunction between IDU, ODU and IDU's wired controller	Cb	Overflow distribution of IP address
C1	Communication malfunction between main control and DC-DC controller	Cd	Communication malfunction between mode exchanger and ODU
C2	Communication malfunction between main control and inverter compressor driver	Cn	Malfunction of network for IDU and ODU of mode exchanger
C3	Communication malfunction between main control and inverter fan driver	Су	Communication malfunction of mode exchanger
C4	Malfunction of lack of IDU		

Status:

Error Code	Content	Error Code	Content
A0	Unit waiting for debugging	Ay	Shielding status
A2	Refrigerant recovery operation of after-sales	n0	SE operation setting of system
A3	Defrosting	n3	Compulsory defrosting
A4	Oil-return	n4	Limit setting for max. capacity/output capacity
A6	Heat pump function setting	n5	Compulsory excursion of engineering code of IDU
A7	Quiet mode setting	n6	Inquiry of malfunction
A8	Vacuum pump mode	n7	Inquiry of parameters
AH	Heating	n8	Inquiry of project code of IDU
AC	Cooling	n9	Check quantity of IDU on line
AL	Charge refrigerant automatically	nA	Heat pump unit
AE	Charge refrigerant manually	nH	Heating only unit
AF	Fan	nC	Cooling only unit
AJ	Cleaning reminding of filter	nE	Negative code
AP	Debugging confirmation when starting up the unit	nF	Fan model
AU	Long-distance emergency stop	nJ	High temperature prevention when heating
Ab	Emergency stop of operation	nU	Eliminate the long-distance shielding command of IDU
Ad	Limit operation	nb	Bar code inquiry
An	Child lock status	nn	Length modification of connection pipe of ODU

8 Maintenance and Care

Regular check, Maintenance and care should be performed every six months by professional personnel, which will prolong the unit life span. Disconnect the power supply

before cleaning and maintenance.

8.1 Outdoor Heat Exchanger

Outdoor heat exchanger is required to be cleaned once every six months. Use vacuum cleaner with nylon brush to clean up dust and sundries on the surface of heat exchanger. Blow away dust by compressed air if it is available. Never use water to wash the heat exchanger.

8.2 Drain Pipe

Regularly check if the drain pipe is clogged in order to drain condensate smoothly.

8.3 Notice before Seasonal Use

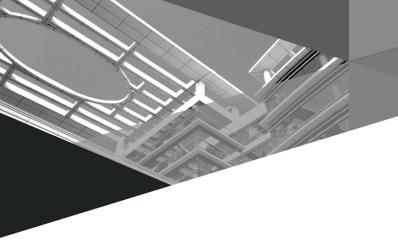
- (1) Check if the inlet/outlet of the indoor/outdoor unit is clogged.
- (2) Check if the ground wire is earthed reliably.
- (3) Check if battery of remote wireless controller has been replaced.
- (4) Check if the filter screen has been set soundly.
- (5) After long period of shutdown, open the main power switch 8 hours before operating the unit so as to preheat the compressor crankcase.
- (6) Check if the outdoor unit is installed firmly. If there is something abnormal, please contact the GREE appointed service center.

8.4 Maintenance after Seasonal Use

- (1) Cut off main power supply of the unit.
- (2) Clean filter screen and indoor and outdoor units.
- (3) Clean the dust and sundries on the indoor and outdoor units.
- (4) In the event of rusting, use the anti-rust paint to stop spreading of rust.

8.5 Parts Replacement

Purchase parts from Gree appointed service center or dealer if necessary.


NOTICE! During airtight and leakage test, never mix oxygen, ethane and other dangerous gas into refrigeration circuit. In case of hazard, it's better to use nitrogen or refrigerant to accomplish such test.

9 After-sales Service

In case the air-conditioning unit you bought has any quality problem or you have any inquiry, please contact the local after-sales service agency designated by Gree.

Warranty should meet the following requirements:

- (1) First run of the unit should be operated by professional personnel from Gree appointed service center.
- (2) Only Gree manufactured accessories can be used on the machine.
- (3) All the instructions listed in this manual should be followed.
- (4) Warranty will be automatically invalid if fails to obey any item mentioned above.

GREE ELECTRIC APPLIANCES, INC. OF ZHUHAI

Add: West Jinji Rd, Qianshan, Zhuhai, Guangdong, China, 519070

Tel: (+86-756) 8522218 Fax: (+86-756) 8669426

E-mail: global@cn.gree.com www.gree.com

